Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (7): 489-498    DOI: 10.11901/1005.3093.2024.319
  研究论文 本期目录 | 过刊浏览 |
Ti65钛合金的超塑变形和微观组织演变
张宁1,2,3(), 王耀奇1,2,3, 杨毅4, 慕延宏1,2,3, 李震1,2,3, 陈志勇5
1.中国航空制造技术研究院 北京 100024
2.塑性成形技术航空科技重点实验室 北京 100024
3.数字化塑性成形技术及装备北京市重点实验室 北京 100024
4.陕西飞机工业有限责任公司 汉中 710048
5.中国科学院金属研究所 沈阳 110016
Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy
ZHANG Ning1,2,3(), WANG Yaoqi1,2,3, YANG Yi4, MU Yanhong1,2,3, LI Zhen1,2,3, CHEN Zhiyong5
1.AVIC Manufacturing Technology Institute, Beijing 100024, China
2.Aeronautical Key Laboratory for Plastic Forming Technology, Beijing 100024, China
3.Beijing Key Laboratory of Digital Forming Technology and Equipment, Beijing 100024, China
4.Shanxi Aircraft Industry Co., Ltd., Hanzhong 710048, China
5.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
Ning ZHANG, Yaoqi WANG, Yi YANG, Yanhong MU, Zhen LI, Zhiyong CHEN. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. Chinese Journal of Materials Research, 2025, 39(7): 489-498.

全文: PDF(19636 KB)   HTML
摘要: 

在900~960 ℃,0.001~0.03 s-1条件下进行Ti65高温钛合金的高温超塑性拉伸实验,研究其超塑性变形行为并揭示了变形温度和应变速率对其超塑性能的影响;计算了Ti65钛合金超塑变形的应变速率敏感性指数m、应力指数n和变形激活能Q,揭示了Ti65钛合金的超塑变形机制;用电子背散射技术(EBSD)表征了Ti65钛合金超塑拉伸试样断口附近的晶粒尺寸、晶粒取向和分布规律,揭示了变形温度和应变速率对材料超塑变形过程中微观组织演变的影响规律。结果表明,随着变形温度的提高Ti65钛合金的流动应力逐渐减小,伸长率逐渐提高;降低应变速率则其流动应力随之减小,而伸长率先提高后降低;在变形温度为960 ℃、应变速率为0.003 s-1的条件下Ti65钛合金的伸长率达到最大值1108%,其超塑性能最佳;Ti65钛合金的应变速率敏感性指数m值为0.42、应力指数n值为2.5、超塑变形激活能Q为393 kJ/mol,表明其超塑性变形机制以晶界滑动和位错滑移为主;在不同条件下的超塑变形过程中Ti65钛合金均发生显著的动态再结晶,生成了均匀分布的细小等轴晶粒,且随着变形温度的提高和应变速率的减小不连续动态再结晶的程度提高;Ti65钛合金的晶粒尺寸随着变形温度的提高而增大,随着应变速率的提高先增大后减小。

关键词 金属材料Ti65钛合金超塑变形变形行为微观组织演变动态再结晶    
Abstract

The superplastic deformation behavior of Ti65 Ti-alloy was studied via tensile testing in temperature range of 900~960 oC at strain rate range of 0.001~0.03 s-1 in terms of the effect of temperature and strain rate on the superplastic properties of the alloy. Meanwhile, the strain rate sensitivity index m, stress index n and deformation activation energy Q of the alloy were acquired. The grain size, grain orientation and distribution in the area nearby the tensile fracture of the test alloy were characterized by electron back-scattered diffraction (EBSD) technique. The results show that with the increase of temperature the flow stress of Ti65 Ti-alloy is reduced and the elongation is elevated. With the reducing strain rate, the flow stress decreases, and the elongation first increases and then decreases. At the deformation temperature of 960 oC and strain rate of 0.003 s-1, the maximum elongation of the alloy reached 1108%, namely its superplasticity is the best. Correspondingly, the strain rate sensitivity index m is 0.42, the stress index n is 2.5, and the superplastic deformation activation energy Q is 393 kJ/mol, which illuminated that the predominate deformation mechanism is grain boundary sliding and dislocation sliding for Ti65 Ti-alloy. During the superplastic deformation process under different conditions, the Ti65 Ti-alloy undergoes significant dynamic recrystallization, generating uniformly distributed fine equiaxed grains. As the deformation temperature rising and the strain rate reducing, the degree of discontinuous dynamic recrystallization enhances. The grain size of Ti65 Ti-alloy increases with the increase of deformation temperature, and while increases first and then decreases with the increase of strain rate.

Key wordsmetallic materials    Ti65 titanium alloy    superplasticity    deformation behavior    microstructure evolution    dynamic recrystallization
收稿日期: 2024-07-24     
ZTFLH:  TG132  
基金资助:航空科学基金(2022Z047025001)
通讯作者: 张宁,高级工程师,zn64112@163.com,研究方向为耐高温金属材料塑性成形技术
Corresponding author: ZHANG Ning, Tel: 13811524062, E-mail: zn64112@163.com
作者简介: 张宁,女,1985年生,博士
ElementsAlSnZrMoSiTaNbWCTi
Content5.5~6.53.0~4.02.0~4.00.2~1.00.2~0.50.5~2.50.2~1.00.5~1.50.02~0.08Bal.
表1  Ti65钛合金主要化学成分
图1  Ti65钛合金板材的微观组织
图2  超塑性拉伸试样的尺寸
图3  在不同变形条件下拉伸后试样的宏观形貌
图4  在不同变形条件下Ti65钛合金超塑拉伸应力-应变曲线
图5  变形温度对Ti65合金峰值应力和伸长率的影响
图6  应变速率对Ti65合金峰值应力和伸长率的影响
图7  lnσ-lnε˙关系曲线
图8  lnσ-1/T曲线
图9  在不同变形温度下Ti65钛合金晶粒的形貌
图10  在不同变形温度下Ti65钛合金的取向分布
图11  平均晶粒尺寸与变形温度的关系
图12  应变速率不同的Ti65钛合金的晶粒形貌
图13  应变速率不同的Ti65钛合金的取向分布
图14  平均晶粒尺寸与应变速率的关系
[1] Liu Z G, Li P J, Yin X Y, et al. Effects of deformation parameters on the superplastic behavior and microstructure evolution of TA32 alloy [J]. Rare Metal Mat. Eng., 2018, 47(11): 3473
[1] 刘章光, 李培杰, 尹西岳 等. 变形参数对TA32合金的超塑性变形行为及微观组织演化的影响 [J]. 稀有金属材料与工程, 2018, 47(11): 3473
[2] Zhang T, Liu Y, Sanders D G, et al. Development of fine-grain size titanium 6Al-4V alloy sheet material for low temperature superplastic forming [J]. Mater. Sci. Eng., A, 2014, 608: 265
[3] Kaibyshev O A, Safiullin R V, Lutfullin R Y, et al. Advanced superplastic forming and diffusion bonding of titanium alloy [J]. Mater. Sci. Technol., 2013, 22: 343
[4] Wu D P, Wu Y, Chen M H, et al. High temperature flow behavior and microstructure evolution of TC31 titanium alloy sheets [J]. Rare Metal Mat. Eng., 2019, 48(12): 3901
[4] 吴迪鹏, 武 永, 陈明和 等. TC31钛合金板材高温流变行为及组织演变研究 [J]. 稀有金属材料与工程, 2019, 48(12): 3901
[5] Chen C, Chen M H, Xie L S, et al. Flow behavior of TA32 titanium alloy at high temperature and its constitutive model [J]. Rare Metal Mat. Eng., 2019, 48(3): 827
[5] 陈 灿, 陈明和, 谢兰生 等. TA32新型钛合金高温流变行为及本构模型研究 [J]. 稀有金属材料与工程, 2019, 48(3): 827
[6] Liu Y Y, Chen Z Y, Jin T N, et al. Present situation and prospect of 600 oC high-temperature Titanium alloys [J]. Mater. Rev., 2018, 32(11): 1863
[6] 刘莹莹, 陈子勇, 金头男 等. 600 ℃高温钛合金发展现状与展望 [J]. 材料导报, 2018, 32(11): 1863
[7] Wanjara P, Jahazi M, Monajati H, et al. Hot working behavior of near-α alloy IMI834 [J]. Mater. Sci. Eng., A, 2005, 396: 50
[8] Singh N, Singh V. Effect of temperature on tensile properties of near-α alloy Timetal 834 [J]. Mater. Sci. Eng., A, 2008, 485(1-2):130
[9] Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., A, 1996, 213(1-2): 103
[10] Huang D, Yang S L, Ma L, et al. Current research status and development of high-temperature Titanium alloys [J]. Iron Steel Vanadium Titanium, 2018, 39(1): 60
[10] 黄 栋, 杨绍利, 马 兰 等. 高温钛合金的研究现状及其发展 [J]. 钢铁钒钛, 2018, 39(1): 60
[11] Chen Z Y, Liu Y Y, Jin Y F, et al. Research on 650 oC high temperature titanium alloy technology for aero-engine [J]. Aeronaut. Manufact. Technol., 2019, 62(19): 22
[11] 陈子勇, 刘莹莹, 靳艳芳 等. 航空发动机用耐650 ℃高温钛合金研究现状与进展 [J]. 航空制造技术, 2019, 62(19): 22
[12] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective [J]. J. Aeronaut. Mater., 2014, 34(4): 1
[12] 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
doi: 10.11868/j.issn.1005-5053.2014.4.001
[13] Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33(10): 785
doi: 10.11901/1005.3093.2019.110
[13] 吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织,织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33(10): 785
doi: 10.11901/1005.3093.2019.110
[14] Yue K. Study on microstructure and key high temperature mechanical properties of Ti65 alloy [D]. Hefei: University of Science and Technology of China, 2019.
[14] 岳 颗. Ti65合金显微组织及关键高温力学性能研究 [D]. 合肥: 中国科学技术大学, 2019
[15] Li P, Xu H F, Meng M, et al. Hot deformation behavior and constitutive equation of Ti65 titanium alloy [J]. J. Plast. Eng., 2024, 31(2): 120
[15] 李 萍, 许海峰, 孟 淼 等. Ti65钛合金热变形行为及本构方程 [J]. 塑性工程学报, 2024, 31(2): 120
[16] Feng Y, Chen Z Y, Jiang S M, et al. Effect of a NiCrAlSiY coating on cyclic oxidation and room temperature tensile properties of Ti65 alloy plate [J]. Chin. J. Mater. Res., 2023, 37(7): 523
doi: 10.11901/1005.3093.2022.145
[16] 冯 叶, 陈志勇, 姜肃猛 等. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响 [J]. 材料研究学报, 2023, 37(7): 523
[17] Lin D L, Sun F. Superplasticity in a large-grained TiAl alloy [J]. Intermetallics, 2004, 12(7-9):875
[18] Yang X K, Wang K S, Shi J M, et al. High temperature deformation behaviour of TC17 titanium alloy [J]. Rare Metal Mat. Eng., 2018, 47(9): 2895
[18] 杨晓康, 王快社, 史佳敏 等. TC17钛合金高温变形行为研究 [J]. 稀有金属材料与工程, 2018, 47(9): 2895
[19] Zhang P. Micro-orientation evolution and deformation mechanism of Al-Li alloy 5A90 during superplastic deformation [D]. Changsha: Zhong Nan University, 2014
[19] 张 盼. 5A90铝锂合金超塑性变形微取向演变及变形机理 [D]. 长沙: 中南大学, 2014
[20] Zhang K F, Yin D L, Wang G F, et al. Microstructure evolution and fracture behavior in superplastic deformation of hot-rolled AZ31 Mg alloy [J]. J. Aeronaut. Mater., 2005, 25(1): 5
[20] 张凯锋, 尹德良, 王国峰 等. 热轧AZ31镁合金超塑变形中的微观组织演变及断裂行为 [J]. 航空材料学报, 2005, 25(1): 5
[21] Zhang T Y. Study on fine-grain size titanium 6Al-4V alloy material for low temperature superplasticity [D]. Changsha: Zhong Nan University, 2014
[21] 张拓阳. 细晶TC4合金的低温超塑性变形研究 [D]. 长沙: 中南大学, 2014
[22] Li M Z, Bai C G, Zhang Z Q, et al. Hot Deformation Behavior of TC2 Titanium Alloy [J]. Chin. J. Mater. Res., 2020, 34(12): 892
[22] 李沐泽, 柏春光, 张志强 等. TC2钛合金的高温热变形行为 [J]. 材料研究学报, 2020, 34(12): 892
doi: 10.11901/1005.3093.2020.127
[23] Liang H Q, Guo H Z, Nan Y, et al. The identification of dynamic recrystallization type during hot deformation process [J]. Science China, 2014, 44(12): 1309
[23] 梁后权, 郭鸿镇, 南 洋 等. 高温变形过程中的动态再结晶类型识别 [J]. 中国科学, 2014, 44(12): 1309
[24] Lin Y C, He D G, Chen M S, et al. EBSD analysis of evolution of dynamic recrystallization grains and δ phase in a nickel-based superalloy during hot compressive deformation [J]. Mater. Des., 2016, 97: 13
[25] Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130
[26] McQueen H J. Development of dynamic recrystallization theory [J]. Mater. Sci. Eng., A, 2004, 387-389: 203
[27] Li D F, Guo S L, Peng H J, et al. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy [J]. Mater. Des., 2011, 32: 696
[28] Wang Y, Shao W Z, Zhen L, et al. Flow behavior and microstructures of superalloy 718 during high temperature deformation [J]. Mater. Sci. Eng., A, 2008, 497: 479
[1] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[2] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[3] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[4] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[5] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[6] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[7] 王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
[8] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[9] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
[10] 邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
[11] 吴玉程, 左彤, 谭晓月, 朱晓勇, 刘家琴. 第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构[J]. 材料研究学报, 2025, 39(5): 343-352.
[12] 任学昌, 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦. 在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响[J]. 材料研究学报, 2025, 39(5): 329-342.
[13] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[14] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[15] 胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.