Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (12): 952-960    DOI: 10.11901/1005.3093.2025.034
  研究论文 本期目录 | 过刊浏览 |
双形态异质结构FeCrNiAl多主元合金的强塑性
王君阳1,2, 胡利昊1,2, 张璐1,2()
1.沈阳航空航天大学材料科学与工程学院 沈阳 110136
2.沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室 沈阳 110136
Strength and Ductility of Dual-phasic Heterostructured FeCrNiAl Multi-principal Element Alloy
WANG Junyang1,2, HU Lihao1,2, ZHANG Lu1,2()
1.School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2.Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

王君阳, 胡利昊, 张璐. 双形态异质结构FeCrNiAl多主元合金的强塑性[J]. 材料研究学报, 2025, 39(12): 952-960.
Junyang WANG, Lihao HU, Lu ZHANG. Strength and Ductility of Dual-phasic Heterostructured FeCrNiAl Multi-principal Element Alloy[J]. Chinese Journal of Materials Research, 2025, 39(12): 952-960.

全文: PDF(12251 KB)   HTML
摘要: 

用真空电弧熔炼Fe40Cr37Ni20Al3多主元合金并进行冷轧退火以调控其显微组织,系统研究了这种合金力学性能变化的微观机制。结果表明,这种合金的固溶态具有BCC+FCC双相结构,冷轧退火处理使其具有双形态异质结构,BCC相和FCC相分别转变为“硬包软”型与“混晶”型异质结构,使强度和塑性协同提高。塑性提高的主要原因,是“硬包软”型异质结构使原BCC相的变形能力提高;强度的提高主要与双异质结构引起的HDI强化效应和组织细化相关。

关键词 金属材料多主元合金热机械处理力学性能异质结构    
Abstract

A multi-component high-entropy alloy Fe40Cr37Ni20Al3 was melted via vacuum arc melting and casting, which then was subjected to cold rolling and annealing so that to control and adjust its microstructure. Then the microstructure evolution and mechanical properties of the alloy were systematically investigated. The results demonstrate that the as-cast alloy exhibits a dual-phase structure comprising BCC and FCC phases. After cold rolling and annealing, the alloy develops a dual-phasic heterogeneous structure, wherein the BCC phase transforms into a "hard-encapsulated-soft" structure and the FCC phase evolves into a "mixed-grain" structure. This microstructural modification enables a synergistic enhancement in strength and ductility of the alloy. The improvement in ductility is primarily attributed to the enhanced deformability of the BCC phase facilitated by the "hard-encapsulated-soft" structure, while the increase in strength is predominantly ascribed to the hetero-deformation-induced (HDI) strengthening effect and microstructural refinement resulting from the dual-morphology heterogeneous structure.

Key wordsmetallic materials    multi-principal element alloys    thermomechanical processing    mechanical properties    heterogeneous structure
收稿日期: 2025-01-16     
ZTFLH:  TG13  
基金资助:沈阳航空航天大学航空制造工艺数字化国防重点学科实验室开放基金(SHSYS202205);辽宁省高校基本科研业务项目(LJ212410143012);辽宁省高校基本科研业务项目(LJ232410143021);沈阳航空航天大学大学生创新创业训练计划(D202410181358484165)
通讯作者: 张璐,副教授,zhanglu5853@163.com,研究方向为多主元合金成分设计及强韧化机制研究
Corresponding author: ZHANG Lu, Tel: 15840198862, E-mail: zhanglu5853@163.com
作者简介: 王君阳,男,2002年生,硕士生
图1  SS 合金 的SEM 显微组织
SampleFigurePhase/RegionElement
FeCrNiAl
SSFig.1aMatrix phase38.7441.8416.343.10
Second phase40.4930.9024.324.31
表1  SS合金中两相的化学成分
图2  CA合金的SEM显微组织
SampleFigureRegionElement
FeCrNiAl
CAFig.2aA39.7437.2419.753.27
B41.5927.8226.204.41
表2  CA合金不同区域的化学成分
图3  CA合金基体区的TEM照片
SampleRegionPhaseElement
FeCrNiAl
CAABCC matrix35.7855.707.141.39
FCC phase43.0527.0925.764.10
B2 phase19.3419.6436.8124.21
BFCC43.6127.2626.292.84
BCC34.8556.867.101.19
表3  CA合金中不同区域相的化学成分
图4  CA合金中再结晶区的TEM照片
图5  Fe40Cr35Ni20Al3合金的组织演变示意图
图6  两种合金的室温拉伸应力-应变曲线以及屈服强度和延伸率的比较
图7  CA合金中A区域的变形过程示意图
图8  CA合金中B区域的变形过程示意图
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
[2] Wang J, Huang W G. Microstructure and mechanical properties of CrMoVNbFe x high-entropy alloys [J]. Chin. J. Mater. Res., 2016, 30: 609
[2] 王 江, 黄维刚. CrMoVNbFe x 高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609
[3] Zeng S, Zhou Y K, Gao H Q, et al. Novel as-cast Ti-rich refractory complex concentrated alloys with superior tensile properties [J]. Sci. China Mater., 2024, 67: 311
doi: 10.1007/s40843-023-2705-2
[4] Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
doi: 10.1016/j.actamat.2015.04.014
[5] Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility [J]. Scr. Mater., 2014, 72-73: 5
doi: 10.1016/j.scriptamat.2013.09.030
[6] Wang F J, Zhang Y, Chen G L, et al. Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy [J]. Int. J. Mod. Phys., 2009, 23B: 1254
[7] Wu Z, Parish C M, Bei H. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys [J]. J. Alloy. Compd., 2015, 647: 815
doi: 10.1016/j.jallcom.2015.05.224
[8] Wen S H, Zhao Z H, Huang Z H, et al. Effects of Ti on microstructures and properties of CoCrNi series medium/high entropy alloys containing single-phase FCC [J]. Chin. J. Nonferrous Met., 2023, 33: 1480
[8] 温盛华, 赵志豪, 黄正华 等. Ti对单相FCC的CoCrNi体系中/高熵合金组织与性能的影响 [J]. 中国有色金属学报, 2023, 33: 1480
[9] Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy [J]. Acta Mater., 2014, 65: 85
doi: 10.1016/j.actamat.2013.11.049
[10] Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
[11] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
[12] Mao J J, Fu T, Pan H C, et al. Kr ions irradiation damage behavior of AlNbMoZrB refractory high-entropy alloy [J]. Chin. J. Mater. Res., 2023, 37: 641
doi: 10.11901/1005.3093.2022.526
[12] 毛建军, 富 童, 潘虎成 等. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为 [J]. 材料研究学报, 2023, 37: 641
doi: 10.11901/1005.3093.2022.526
[13] Zhang W, Xu Q, Wu S S, et al. Microstructure and mechanical properties of NbMoTiVSi x refractory high entropy alloy [J]. Chin. J. Rare Met., 2023, 47: 1204
[13] 张 炜, 徐 琴, 吴帅帅 等. NbMoTiVSi x 难熔高熵合金组织结构及力学性能 [J]. 稀有金属, 2023, 47: 1204
[14] Lou Z K, Liu J W, Lin Y T, et al. Microstructure and mechanical properties of Co36Ni(37- x)Cr20Al3Ti2Nb x medium-entropy alloys [J]. Trans. Mater. Heat Treat., 2024, 45: 117
[14] 娄照坤, 刘继文, 林雅婷 等. Co36Ni(37- x)Cr20Al3Ti2Nb x 中熵合金的微观组织和力学性能 [J]. 材料热处理学报, 2024, 45: 117
[15] Drescher S, Seils S, Boll T, et al. Solid solution strengthening in single-phase Au-Cu-Ni-Pd-Pt-based high-entropy alloys [J]. J. Alloy. Compd., 2024, 1002: 175273
doi: 10.1016/j.jallcom.2024.175273
[16] Liu J W, Hu Z H, Wang J Y, et al. Effect of γ′ phase coarsening on tensile properties during long-term aging of NiCoCrFeAlTiMoW alloy [J]. J. Mater. Eng., 2024, 52(2): 172
doi: 10.11868/j.issn.1001-4381.2023.000292
[16] 刘继文, 胡朝辉, 王君阳 等. NiCoCrFeAlTiMoW合金长期时效过程中γ′相粗化对拉伸性能的影响 [J]. 材料工程, 2024, 52(2): 172
doi: 10.11868/j.issn.1001-4381.2023.000292
[17] Jang T J, Baek J H, Suh J Y, et al. Microstructural origin of the superior strength–ductility synergy of γ′-strengthened high-entropy alloy with heterogeneous grain structure and discontinuous precipitation configuration [J]. J. Mater. Res. Technol., 2023, 27: 984
doi: 10.1016/j.jmrt.2023.10.018
[18] Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
doi: 10.1016/j.scriptamat.2012.12.002
[19] Liu D, Qiao J W. Strengthening methods of room and cryogenic temperatures mechanical properties of Fe45Mn15Cr15Ni25 high entropy alloy [J]. J. Taiyuan Univ. Technol., 2021, 52: 509
[19] 刘 丹, 乔珺威. Fe45Mn15Cr15Ni25高熵合金室温及低温力学性能强化方式 [J]. 太原理工大学学报, 2021, 52: 509
[20] Kang L, Liang X P, Li H Z, et al. Effects of rolling and annealing on microstructure and mechanical properties of FeCoCrNiN0.07 high-entropy alloy [J]. Hot Work. Technol., 2024, 53(17): 94
[20] 康 亮, 梁霄鹏, 李慧中 等. 轧制及退火对FeCoCrNiN0.07高熵合金组织及力学性能的影响 [J]. 热加工工艺, 2024, 53(17): 94
[21] Zhou J, Liao H C, Chen H M, et al. Effect of cold rolling on microstructure and mechanical behavior of Fe35Ni35Cr20Mn10 high-entropy alloy [J]. Mater. Charact., 2024, 218: 114503
doi: 10.1016/j.matchar.2024.114503
[22] Qi L, Chrzan D C. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys [J]. Phys. Rev. Lett., 2014, 112: 115503
doi: 10.1103/PhysRevLett.112.115503
[23] Morris J W, Guo Z, Krenn C R, et al. The limits of strength and toughness in steel [J]. ISIJ Int., 2001, 41: 599
doi: 10.2355/isijinternational.41.599
[24] Zhu Y T, Wu X L. Heterostructured materials [J]. Prog. Mater. Sci., 2023, 131: 101019
doi: 10.1016/j.pmatsci.2022.101019
[25] Xing H Z, Li X Y. Architecture design and strengthening-toughening mechanisms in heterogeneous-structured medium/high entropy alloys [J]. Sci. Bull., 2024, 69: 3864
[25] 邢汉峥, 李晓雁. 中高熵合金的异构设计及其强韧化机理 [J]. 科学通报, 2024, 69: 3864
[26] An Z B, Mao S C, Zhang Z, et al. Strengthening-toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
[26] 安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
[27] Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
[28] Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112 pmid: 26554017
[29] Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2 pmid: 30700708
[30] Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
doi: 10.1016/j.mattod.2020.09.029
[31] Schneider M, Laplanche G. Effects of temperature on mechanical properties and deformation mechanisms of the equiatomic CrFeNi medium-entropy alloy [J]. Acta Mater., 2021, 204: 116470
doi: 10.1016/j.actamat.2020.11.012
[32] Fu A, Liu B, Lu W J, et al. A novel supersaturated medium entropy alloy with superior tensile properties and corrosion resistance [J]. Scr. Mater., 2020, 186: 381
doi: 10.1016/j.scriptamat.2020.05.023
[33] Fu A, Liu B, Li Z Z, et al. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100: 120
doi: 10.1016/j.jmst.2021.05.049
[34] Yin Y, Tan Q Y, Sun Q, et al. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96: 113
doi: 10.1016/j.jmst.2021.03.083
[35] Yin Y, Chen Z H, Mo N, et al. High-temperature age-hardening of a novel cost-effective Fe45Ni25Cr25Mo5 high entropy alloy [J]. Mater. Sci. Eng., 2020, 788A: 139580
[36] Hu Z H, Lin Y T, Zhang L, et al. Enhancing mechanical properties of high Cr dual-phase FeCrNi medium-entropy alloy through mutual phase transformation and grain refinement [J]. Mater. Sci. Eng., 2024, 907A: 146745
[37] Wang J R, Wang A G, Zhang L, et al. Enhancing cryogenic mechanical properties of a cost-effective FeCrNi dual-phase multi-principal element alloy by fully constrained heterostructure and deformation twinning [J]. Mater. Sci. Eng., 2024, 916A: 147365
[38] Dong X G, Liu J S, Zhang L, et al. Achieving excellent mechanical properties in a dual-phase FeCrNi medium entropy alloy through athermal transformations and dislocation structures [J]. J. Mater. Res. Technol., 2023, 27: 5219
doi: 10.1016/j.jmrt.2023.11.059
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
[4] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[5] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[6] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[7] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[8] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[9] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[10] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[11] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[12] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[13] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[14] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[15] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.