|
|
|
| 双形态异质结构FeCrNiAl多主元合金的强塑性 |
王君阳1,2, 胡利昊1,2, 张璐1,2( ) |
1.沈阳航空航天大学材料科学与工程学院 沈阳 110136 2.沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室 沈阳 110136 |
|
| Strength and Ductility of Dual-phasic Heterostructured FeCrNiAl Multi-principal Element Alloy |
WANG Junyang1,2, HU Lihao1,2, ZHANG Lu1,2( ) |
1.School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China 2.Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China |
引用本文:
王君阳, 胡利昊, 张璐. 双形态异质结构FeCrNiAl多主元合金的强塑性[J]. 材料研究学报, 2025, 39(12): 952-960.
Junyang WANG,
Lihao HU,
Lu ZHANG.
Strength and Ductility of Dual-phasic Heterostructured FeCrNiAl Multi-principal Element Alloy[J]. Chinese Journal of Materials Research, 2025, 39(12): 952-960.
| [1] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
|
| [2] |
Wang J, Huang W G. Microstructure and mechanical properties of CrMoVNbFe x high-entropy alloys [J]. Chin. J. Mater. Res., 2016, 30: 609
|
| [2] |
王 江, 黄维刚. CrMoVNbFe x 高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609
|
| [3] |
Zeng S, Zhou Y K, Gao H Q, et al. Novel as-cast Ti-rich refractory complex concentrated alloys with superior tensile properties [J]. Sci. China Mater., 2024, 67: 311
doi: 10.1007/s40843-023-2705-2
|
| [4] |
Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
doi: 10.1016/j.actamat.2015.04.014
|
| [5] |
Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility [J]. Scr. Mater., 2014, 72-73: 5
doi: 10.1016/j.scriptamat.2013.09.030
|
| [6] |
Wang F J, Zhang Y, Chen G L, et al. Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy [J]. Int. J. Mod. Phys., 2009, 23B: 1254
|
| [7] |
Wu Z, Parish C M, Bei H. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys [J]. J. Alloy. Compd., 2015, 647: 815
doi: 10.1016/j.jallcom.2015.05.224
|
| [8] |
Wen S H, Zhao Z H, Huang Z H, et al. Effects of Ti on microstructures and properties of CoCrNi series medium/high entropy alloys containing single-phase FCC [J]. Chin. J. Nonferrous Met., 2023, 33: 1480
|
| [8] |
温盛华, 赵志豪, 黄正华 等. Ti对单相FCC的CoCrNi体系中/高熵合金组织与性能的影响 [J]. 中国有色金属学报, 2023, 33: 1480
|
| [9] |
Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy [J]. Acta Mater., 2014, 65: 85
doi: 10.1016/j.actamat.2013.11.049
|
| [10] |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
|
| [11] |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
|
| [12] |
Mao J J, Fu T, Pan H C, et al. Kr ions irradiation damage behavior of AlNbMoZrB refractory high-entropy alloy [J]. Chin. J. Mater. Res., 2023, 37: 641
doi: 10.11901/1005.3093.2022.526
|
| [12] |
毛建军, 富 童, 潘虎成 等. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为 [J]. 材料研究学报, 2023, 37: 641
doi: 10.11901/1005.3093.2022.526
|
| [13] |
Zhang W, Xu Q, Wu S S, et al. Microstructure and mechanical properties of NbMoTiVSi x refractory high entropy alloy [J]. Chin. J. Rare Met., 2023, 47: 1204
|
| [13] |
张 炜, 徐 琴, 吴帅帅 等. NbMoTiVSi x 难熔高熵合金组织结构及力学性能 [J]. 稀有金属, 2023, 47: 1204
|
| [14] |
Lou Z K, Liu J W, Lin Y T, et al. Microstructure and mechanical properties of Co36Ni(37- x)Cr20Al3Ti2Nb x medium-entropy alloys [J]. Trans. Mater. Heat Treat., 2024, 45: 117
|
| [14] |
娄照坤, 刘继文, 林雅婷 等. Co36Ni(37- x)Cr20Al3Ti2Nb x 中熵合金的微观组织和力学性能 [J]. 材料热处理学报, 2024, 45: 117
|
| [15] |
Drescher S, Seils S, Boll T, et al. Solid solution strengthening in single-phase Au-Cu-Ni-Pd-Pt-based high-entropy alloys [J]. J. Alloy. Compd., 2024, 1002: 175273
doi: 10.1016/j.jallcom.2024.175273
|
| [16] |
Liu J W, Hu Z H, Wang J Y, et al. Effect of γ′ phase coarsening on tensile properties during long-term aging of NiCoCrFeAlTiMoW alloy [J]. J. Mater. Eng., 2024, 52(2): 172
doi: 10.11868/j.issn.1001-4381.2023.000292
|
| [16] |
刘继文, 胡朝辉, 王君阳 等. NiCoCrFeAlTiMoW合金长期时效过程中γ′相粗化对拉伸性能的影响 [J]. 材料工程, 2024, 52(2): 172
doi: 10.11868/j.issn.1001-4381.2023.000292
|
| [17] |
Jang T J, Baek J H, Suh J Y, et al. Microstructural origin of the superior strength–ductility synergy of γ′-strengthened high-entropy alloy with heterogeneous grain structure and discontinuous precipitation configuration [J]. J. Mater. Res. Technol., 2023, 27: 984
doi: 10.1016/j.jmrt.2023.10.018
|
| [18] |
Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
doi: 10.1016/j.scriptamat.2012.12.002
|
| [19] |
Liu D, Qiao J W. Strengthening methods of room and cryogenic temperatures mechanical properties of Fe45Mn15Cr15Ni25 high entropy alloy [J]. J. Taiyuan Univ. Technol., 2021, 52: 509
|
| [19] |
刘 丹, 乔珺威. Fe45Mn15Cr15Ni25高熵合金室温及低温力学性能强化方式 [J]. 太原理工大学学报, 2021, 52: 509
|
| [20] |
Kang L, Liang X P, Li H Z, et al. Effects of rolling and annealing on microstructure and mechanical properties of FeCoCrNiN0.07 high-entropy alloy [J]. Hot Work. Technol., 2024, 53(17): 94
|
| [20] |
康 亮, 梁霄鹏, 李慧中 等. 轧制及退火对FeCoCrNiN0.07高熵合金组织及力学性能的影响 [J]. 热加工工艺, 2024, 53(17): 94
|
| [21] |
Zhou J, Liao H C, Chen H M, et al. Effect of cold rolling on microstructure and mechanical behavior of Fe35Ni35Cr20Mn10 high-entropy alloy [J]. Mater. Charact., 2024, 218: 114503
doi: 10.1016/j.matchar.2024.114503
|
| [22] |
Qi L, Chrzan D C. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys [J]. Phys. Rev. Lett., 2014, 112: 115503
doi: 10.1103/PhysRevLett.112.115503
|
| [23] |
Morris J W, Guo Z, Krenn C R, et al. The limits of strength and toughness in steel [J]. ISIJ Int., 2001, 41: 599
doi: 10.2355/isijinternational.41.599
|
| [24] |
Zhu Y T, Wu X L. Heterostructured materials [J]. Prog. Mater. Sci., 2023, 131: 101019
doi: 10.1016/j.pmatsci.2022.101019
|
| [25] |
Xing H Z, Li X Y. Architecture design and strengthening-toughening mechanisms in heterogeneous-structured medium/high entropy alloys [J]. Sci. Bull., 2024, 69: 3864
|
| [25] |
邢汉峥, 李晓雁. 中高熵合金的异构设计及其强韧化机理 [J]. 科学通报, 2024, 69: 3864
|
| [26] |
An Z B, Mao S C, Zhang Z, et al. Strengthening-toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
|
| [26] |
安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
|
| [27] |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
| [28] |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
pmid: 26554017
|
| [29] |
Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2
pmid: 30700708
|
| [30] |
Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
doi: 10.1016/j.mattod.2020.09.029
|
| [31] |
Schneider M, Laplanche G. Effects of temperature on mechanical properties and deformation mechanisms of the equiatomic CrFeNi medium-entropy alloy [J]. Acta Mater., 2021, 204: 116470
doi: 10.1016/j.actamat.2020.11.012
|
| [32] |
Fu A, Liu B, Lu W J, et al. A novel supersaturated medium entropy alloy with superior tensile properties and corrosion resistance [J]. Scr. Mater., 2020, 186: 381
doi: 10.1016/j.scriptamat.2020.05.023
|
| [33] |
Fu A, Liu B, Li Z Z, et al. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100: 120
doi: 10.1016/j.jmst.2021.05.049
|
| [34] |
Yin Y, Tan Q Y, Sun Q, et al. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96: 113
doi: 10.1016/j.jmst.2021.03.083
|
| [35] |
Yin Y, Chen Z H, Mo N, et al. High-temperature age-hardening of a novel cost-effective Fe45Ni25Cr25Mo5 high entropy alloy [J]. Mater. Sci. Eng., 2020, 788A: 139580
|
| [36] |
Hu Z H, Lin Y T, Zhang L, et al. Enhancing mechanical properties of high Cr dual-phase FeCrNi medium-entropy alloy through mutual phase transformation and grain refinement [J]. Mater. Sci. Eng., 2024, 907A: 146745
|
| [37] |
Wang J R, Wang A G, Zhang L, et al. Enhancing cryogenic mechanical properties of a cost-effective FeCrNi dual-phase multi-principal element alloy by fully constrained heterostructure and deformation twinning [J]. Mater. Sci. Eng., 2024, 916A: 147365
|
| [38] |
Dong X G, Liu J S, Zhang L, et al. Achieving excellent mechanical properties in a dual-phase FeCrNi medium entropy alloy through athermal transformations and dislocation structures [J]. J. Mater. Res. Technol., 2023, 27: 5219
doi: 10.1016/j.jmrt.2023.11.059
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|