Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (12): 901-908    DOI: 10.11901/1005.3093.2025.103
  研究论文 本期目录 | 过刊浏览 |
Hf元素掺杂对TiSc合金调幅分解的影响
王昱坤1,2, 段慧超1,2(), 杜奎1,2
1.中国科学技术大学材料科学与工程学院 沈阳 110016
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Influence of Hf Doping on Spinodal Decomposition of TiSc Alloy
WANG Yukun1,2, DUAN Huichao1,2(), DU Kui1,2
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王昱坤, 段慧超, 杜奎. Hf元素掺杂对TiSc合金调幅分解的影响[J]. 材料研究学报, 2025, 39(12): 901-908.
Yukun WANG, Huichao DUAN, Kui DU. Influence of Hf Doping on Spinodal Decomposition of TiSc Alloy[J]. Chinese Journal of Materials Research, 2025, 39(12): 901-908.

全文: PDF(18771 KB)   HTML
摘要: 

用透射电子显微镜、扫描电子显微镜和X射线衍射仪等手段表征掺杂不同含量Hf的TiSc合金的微观结构,研究了Hf掺杂对其调幅分解的影响。结果表明,随着Hf元素含量从0提高到10% (原子分数),TiSc合金调幅分解产生的片层组织的宽度呈增大的趋势,α-Ti和α-Sc调幅分解结构由片层分别转变为网格状和块状组织。转变为网格状组织可归因于Hf元素的添加降低了调幅分解的化学驱动力和Ti、Sc原子间的晶格错配度,使体系产生更大范围的成分波动和增大了调幅分解组织的片层宽度;转变为块状组织可归因于低扩散性Hf元素均匀固溶于TiSc合金降低了体系的扩散速率,使α-Ti和α-Sc的调幅分解结构发生转变。同时,随着合金片层组织宽度的增大其维氏硬度从375.37HV降低到281.11HV。这表明,Hf元素的添加改变了TiSc合金的微观组织结构从而影响其硬度。

关键词 金属材料调幅分解电子显微学TiSc合金元素掺杂    
Abstract

Spinodal decomposition enables the formation of continuous nanoscale dual-phase structures with periodic compositional fluctuations, a unique microstructure that significantly enhances mechanical properties such as strength, hardness, and creep resistance of alloys. Consequently, tailoring spinodal decomposition to optimize mechanical performance has emerged as a central objective in materials research. While compositional control is vital to this process, and elemental doping provides a precise strategy to regulate the decomposition behavior, the mechanism related with interactions between dopants and spinodal dynamics remains elusive. In this study, the evolution of nanoscale lamellar microstructures in Hf-doped TiSc alloys (0-10% Hf, in atomic fraction) was systematically investigated by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD), as well as Vickers hardness measurements. The results demonstrate that with the increase of Hf content from 0 to 10%, the lamellar structure width formed by spinodal decomposition in TiSc alloys exhibits a progressive growth trend. Meanwhile, the spinodal decomposition structures of α-Ti and α-Sc undergo morphological transitions from lamellar to interconnected network and blocky morphologies, respectively. The former phenomenon may be attributed to that both the chemical driving force for spinodal decomposition and the lattice mismatch between Ti and Sc atoms may be reduced by the addition of Hf, which may thermodynamically facilitate the occurrence of larger-scale compositional fluctuations within the system, as a consequence, the lamellar width of spinodal decomposition structures is then increased. The latter transformation may be raised from the homogeneous solid solution of low-diffusivity Hf atoms in the TiSc matrix, which significantly decreases the overall diffusion rate of the system, thereby promoting structural evolution in both α-Ti and α-Sc spinodal decomposition phases. Furthermore, the Vickers hardness continuously decreases from 375.37HV to 281.11HV with the widening of lamellar structures, indicating that Hf addition alters the microstructural characteristics and consequently affects the mechanical properties of TiSc alloys.

Key wordsmetallic materials    spinodal decomposition    electron microscopy    TiSc alloy    element doped
收稿日期: 2025-03-11     
ZTFLH:  TG146.2  
基金资助:国家科技重大专项(2019VI00060120);国家重点研发计划(2024YFA1208002);辽宁省自然科学基金(2023-BS-010)
通讯作者: 段慧超,副研究员,hcduan15s@imr.ac.cn,研究方向为金属材料的电子显微学分析
Corresponding author: DUAN Huichao, Tel: (024)83978628, E-mail: hcduan15s@imr.ac.cn
作者简介: 王昱坤,男,2000年生,硕士生
图1  不同Hf元素含量TiSc合金的SEM背散射电子图像
图2  不同Hf元素含量TiSc合金的TEM明场像
图3  不同Hf元素含量TiSc合金中Ti片层宽度的分布
图4  不同Hf元素含量TiSc合金的EDS分析
图5  Hf元素在不同合金中的占比以及不同合金中α-Ti和α-Sc的Ti/Sc比值
图6  不同Hf元素含量TiSc合金的XRD谱
图7  不同Hf元素含量TiSc合金的维氏硬度
图8  维氏硬度与平均片层宽度的关系
[1] Yu Y N. Fundamentals of Materials Science [M]. 2nd ed. Beijing: Higher Education Press, 2012
[1] 余永宁. 材料科学基础 [M]. 2版. 北京: 高等教育出版社, 2012
[2] Cai X. Fundamentals of Materials Science and Engineering [M]. Shanghai: Shanghai Jiao Tong University Press, 2010
[2] 蔡 珣. 材料科学与工程基础 [M]. 上海: 上海交通大学出版社, 2010
[3] Rios O, Ebrahimi F. Spinodal decomposition of the γ-phase upon quenching in the Ti-Al-Nb ternary alloy system [J]. Intermetallics, 2011, 19(1): 93
doi: 10.1016/j.intermet.2010.09.014
[4] Ishiguro Y, Tsukada Y, Koyama T. Phase-field study of the spinodal decomposition rate of β phase in oxygen-added Ti-Nb alloys [J]. Comput. Mater. Sci., 2020, 174: 109471
doi: 10.1016/j.commatsci.2019.109471
[5] Tang Y P, Goto W, Hirosawa S, et al. Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition [J]. Acta Mater., 2017, 131: 57
doi: 10.1016/j.actamat.2017.04.002
[6] Moore K T, Johnson W C, Howe J M, et al. On the interaction between Ag-depleted zones surrounding γ plates and spinodal decomposition in an Al-22at.%Ag alloy [J]. Acta Mater., 2002, 50(5): 943
doi: 10.1016/S1359-6454(01)00394-9
[7] Avila-Davila E O, Melo-Maximo D V, Lopez-Hirata V M, et al. Microstructural simulation in spinodally-decomposed Cu-70at.%Ni and Cu-46at.%Ni-4at.%Fe alloys [J]. Mater. Charact., 2009, 60(6): 560
doi: 10.1016/j.matchar.2009.01.003
[8] Xiao X P, Yi Z Y, Chen T T, et al. Suppressing spinodal decomposition by adding Co into Cu-Ni-Si alloy [J]. J. Alloy. Compd., 2016, 660: 178
doi: 10.1016/j.jallcom.2015.11.103
[9] Kondo S I, Nakashima H, Morimura T. Spinodal decomposition in a melt-spun Cu-15Ni-8Sn alloy [J]. Physica, 2019, 560B: 244
[10] Choo W K, Kim J H, Yoon J C. Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties [J]. Acta Mater., 1997, 45(12): 4877
doi: 10.1016/S1359-6454(97)00201-2
[11] Baker I, Wu H, Wu X, et al. The microstructure of near-equiatomic B2/f.c.c. FeNiMnAl alloys [J]. Mater. Charact., 2011, 62(10): 952
doi: 10.1016/j.matchar.2011.07.009
[12] Zhukov A A. On the history of detection of spinodal predecomposition of supercooled austenite in bainitic iron-carbon alloys [J]. Met. Sci. Heat Treat., 2001, 43(1-2): 55
doi: 10.1023/A:1010474307139
[13] Alleg S, Bouzabata B, Greneche J M. Kinetics study of the spinodal decomposition in the Fe-30.8Cr-12.2Co alloy by Mössbauer spectrometry [J]. J. Alloy. Compd., 1999, 282(1-2): 206
doi: 10.1016/S0925-8388(98)00649-5
[14] Ujihara T, Osamura K. Kinetic analysis of spinodal decomposition process in Fe-Cr alloys by small angle neutron scattering [J]. Acta Mater., 2000, 48(7): 1629
doi: 10.1016/S1359-6454(99)00441-3
[15] Xiao W L, Dargusch M S, Kent D, et al. Activation of homogeneous precursors for formation of uniform and refined α precipitates in a high-strength β-Ti alloy [J]. Materialia, 2020, 9: 100557
doi: 10.1016/j.mtla.2019.100557
[16] Chen W, Yu G X, Li K E, et al. Plastic instability in Ti-6Cr-5Mo-5V-4Al metastable β-Ti alloy containing the β-spinodal decomposition structures [J]. Mater. Sci. Eng., 2021, 811A: 141052
[17] Barriobero-Vila P, Requena G, Schwarz S, et al. Influence of phase transformation kinetics on the formation of α in a β-quenched Ti-5Al-5Mo-5V-3Cr-1Zr alloy [J]. Acta Mater., 2015, 95: 90
doi: 10.1016/j.actamat.2015.05.008
[18] Ng H P, Devaraj A, Nag S, et al. Phase separation and formation of omega phase in the beta matrix of a Ti-V-Cu alloy [J]. Acta Mater., 2011, 59(8): 2981
doi: 10.1016/j.actamat.2011.01.038
[19] Yang J K, Zhang C L, Zhang H, et al. Spinodal decomposition-mediated multi-architectured α precipitates making a metastable β-Ti alloy ultra-strong and ductile [J]. J. Mater. Sci. Technol., 2024, 191: 106
doi: 10.1016/j.jmst.2023.11.071
[20] An Z B, Mao S C, Yang T, et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy [J]. Mater. Horizons, 2021, 8: 948
[21] Hua Z L, Zhang D C, Guo L, et al. Medium-entropy Zr-Nb-Ti alloys with low magnetic susceptibility, high yield strength, and low elastic modulus through spinodal decomposition for bone-implant applications [J]. Acta Biomater., 2024, 190: 623
doi: 10.1016/j.actbio.2024.11.001 pmid: 39522629
[22] Cahn J W. Phase separation by spinodal decomposition in isotropic systems [J]. J. Chem. Phys., 1965, 42(1): 93
doi: 10.1063/1.1695731
[23] Cahn J W. On spinodal decomposition [J]. Acta Mater., 1961, 9(9): 795
doi: 10.1016/0001-6160(61)90182-1
[24] Cahn J W. Hardening by spinodal decomposition [J]. Acta Metall., 1963, 11(12): 1275
doi: 10.1016/0001-6160(63)90022-1
[25] Mott N F, Nabarro F R N. An attempt to estimate the degree of precipitation hardening, with a simple model [J]. Proc. Phys. Soc., 1940, 52(1): 86
doi: 10.1088/0959-5309/52/1/312
[26] Khachatryan A G. Theory of Structural Transformations in Solids [M]. New York: Dover Publications, 2008
[27] Hillert M H. A theory of nucleation for solid metallic solutions [D]. Cambridge: Massachusetts Institute of Technology, 1956
[28] Park H, Haftlang F, Heo Y U, et al. Periodic spinodal decomposition in double-strengthened medium-entropy alloy [J]. Nat. Commun., 2024, 15: 5757
doi: 10.1038/s41467-024-50078-6 pmid: 38982065
[29] Röyset J, Ryum N. Scandium in aluminium alloys [J]. Int. Mater. Rev., 2005, 50(1): 19
doi: 10.1179/174328005X14311
[30] Guo C J, Shi Y F, Chen J S, et al. Effects of P addition on spinodal decomposition and discontinuous precipitation in Cu-15Ni-8Sn alloy [J]. Mater. Charact., 2021, 171: 110760
doi: 10.1016/j.matchar.2020.110760
[31] Panagiotopoulos N T, Jorge A M, Rebai I, et al. Nanoporous titanium obtained from a spinodally decomposed Ti alloy [J]. Micropor. Mesopor. Mater., 2016, 222: 23
doi: 10.1016/j.micromeso.2015.09.054
[32] Jeong Y H, Lee K, Choe H C, et al. Nanotube formation and morphology change of Ti alloys containing Hf for dental materials use [J]. Thin Solid Films, 2009, 517(17): 5365
doi: 10.1016/j.tsf.2009.03.167
[33] Kikuchi M, Takahashi M, Sato H, et al. Grindability of cast Ti-Hf alloys [J]. J. Biomed. Mater. Res., 2006, 77B(1) : 34
[34] Sato H, Kikuchi M, Komatsu M, et al. Mechanical properties of cast Ti-Hf alloys [J]. J. Biomed. Mater. Res., 2005, 72B: 362
doi: 10.1002/jbm.b.v72b:2
[35] Zhou Y L, Niinomi M, Akahori T. Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf [J]. Mater. Sci. Eng., 2008, 483-484A: 153
[36] Imgram A G, Williams D N, Ogden H R. Tensile properties of binary titanium-zirconium and titanium-hafnium alloys [J]. J. Less Common Met., 1962, 4(3): 217
doi: 10.1016/0022-5088(62)90068-1
[37] Porter D A, Easterling K E, Sherif M Y. Phase Transformations in Metals and Alloys [M]. 4th ed. Boca Raton: CRC Press, 2021
[38] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. interfacial free energy [J]. J. Chem. Phys., 1958, 28(2): 258
doi: 10.1063/1.1744102
[39] Zhang L, Xiang Z L, Li X D, et al. Spinodal decomposition in Fe-25Cr-12Co alloys under the influence of high magnetic field and the effect of grain boundary [J]. Nanomaterials, 2018, 8(8): 578
doi: 10.3390/nano8080578
[40] Umakoshi Y, Nakano T. The role of ordered domains and slip mode of α2 phase in the plastic behaviour of TiAl crystals containing oriented lamellae [J]. Acta Metall. Mater., 1993, 41(4): 1155
doi: 10.1016/0956-7151(93)90163-M
[41] Cahoon J R, Broughton W H, Kutzak A R. The determination of yield strength from hardness measurements [J]. Metall. Trans., 1971, 2: 1979
doi: 10.1007/BF02913433
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.