Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (11): 837-844    DOI: 10.11901/1005.3093.2025.031
  研究论文 本期目录 | 过刊浏览 |
等温淬火温度对贝/马复相42CrMo钢组织和力学性能的影响
江腾1,2, 李星2(), 刘汉强2, 崔珊1, 刘宏亮3, 刘军3, 栾义坤2, 姜周华1
1.东北大学冶金学院 沈阳 110819
2.中国科学院金属研究所 沈阳 110016
3.本钢集团有限公司技术中心 本溪 117000
Effect of Isothermal Quenching Temperature on Microstructure and Mechanical Properties of Bainite/Martensite Multi-phase 42CrMo Steel
JIANG Teng1,2, LI Xing2(), LIU Hanqiang2, CUI Shan1, LIU Hongliang3, LIU Jun3, LUAN Yikun2, JIANG Zhouhua1
1.School of Metallurgy, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Benxi Iron and Steel Group Co. , Ltd. Technical Center, Benxi 117000, China
引用本文:

江腾, 李星, 刘汉强, 崔珊, 刘宏亮, 刘军, 栾义坤, 姜周华. 等温淬火温度对贝/马复相42CrMo钢组织和力学性能的影响[J]. 材料研究学报, 2025, 39(11): 837-844.
Teng JIANG, Xing LI, Hanqiang LIU, Shan CUI, Hongliang LIU, Jun LIU, Yikun LUAN, Zhouhua JIANG. Effect of Isothermal Quenching Temperature on Microstructure and Mechanical Properties of Bainite/Martensite Multi-phase 42CrMo Steel[J]. Chinese Journal of Materials Research, 2025, 39(11): 837-844.

全文: PDF(13994 KB)   HTML
摘要: 

使用扫描电镜(SEM)、电子背散射衍射(EBSD)、X射线衍射(XRD)、热膨胀仪等手段表征贝/马复相42CrMo钢并测试其力学性能,研究了在低于Ms点的不同温度等温淬火对42CrMo钢贝/马复相的微观组织和力学性能的影响。结果表明,在250 ℃、280 ℃和310 ℃等温淬火后42CrMo钢的显微组织均由贝氏体和马氏体复相组成。随着等温淬火温度的提高贝氏体相变速率随之提高,其体积分数从18%提高到63%,冲击断口由脆性解理断裂向混合式断裂转变,冲击韧性显著提高。250#和280#的贝/马复相组织的尺寸较小,而310#的贝氏体和马氏体板条都发生粗化,抗拉强度降低。280#总晶界的长度分别为250#和310#的1.65倍和2.43倍。晶界密度的显著提高使280#的屈服强度最高。在280 ℃等温淬火保温1.5 h后,42CrMo钢的屈服强度和抗拉强度分别达到1399 MPa和1708 MPa,延伸率和冲击吸收功分别为12.3%和51.6 J。与310#和250#相比,280#的综合力学性能更优。

关键词 金属材料等温淬火微观组织力学性能贝氏体    
Abstract

The effect of isothermal quenching temperatures below Ms point on the microstructure and mechanical properties of bainite/martensite multi-phase 42CrMo steel was studied by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD), thermal expansion analyzer and mechanical property tester. The results show that the microstructure of 42CrMo steel is composed of bainite and martensite phase after isothermal quenching at 250 oC, 280 oC and 310 oC, correspondingly, the quenched 42CrMo steels were named as 250#, 280# and 310# steel respectively. With the increasing isothermal quenching temperature, the phase transformation rate of bainite is enhanced, and bainite volume fraction increases from 18% to 63%. The mode of impact fracture transforms from brittle cleavage fracture to mixed fracture, while the impact toughness is significantly improved. The bainite/martensite multi-phase microstructure of 250# and 280# steels is fine. However, bainite and martensite laths of 310# coarsens, and large-sized martensite block appears, so that its tensile strength decreases. The total grain boundary length of 280# is 1.65 times that of 250#, and 2.43 times that of 310# respectively. The significantly increased grain boundary density makes 280# possess the highest yield strength. After being isothermally hold at 280 oC for 1.5 h then quenched, the yield strength and tensile strength of 42CrMo steel reach 1399 MPa and 1708 MPa, respectively, and the elongation and impact absorption energy are 12.3% and 51.6 J, respectively. Compared with 310# and 250#, the 280# steel has better overall mechanical properties.

Key wordsmetallic materials    isothermal quenching    microstructure    mechanical properties    bainite
收稿日期: 2025-01-16     
ZTFLH:  TG142  
基金资助:国家自然科学基金(52404354)
通讯作者: 李星,xingli@imr.ac.cn,研究方向为特殊钢组织和性能调控
Corresponding author: LI Xing, Tel: 13840529408, E-mail: xingli@imr.ac.cn
作者简介: 江 腾,男,2000年生,硕士生
SteelCSiMnCrMoLa
42CrMo0.400.270.761.100.210.011
表1  42CrMo钢的化学成分
图1  42CrMo的相变膨胀曲线
图2  等温淬火热处理制度
图3  不同温度等温淬火后试验钢的微观组织
图4  不同温度等温淬火后试验钢的EBSD图像
No.Bainite width /μm

Bainite length /

μm

Martensite width /

μm

Martensite length /μm
250#1.0510.551.5711.28
280#1.1210.651.6412.31
310#1.5511.272.2614.22
表2  不同温度等温淬火后样品的板条尺寸
图5  不同温度等温淬火后试验钢的XRD谱和相体积分数
图6  不同温度等温淬火后试验钢的热膨胀曲线
图7  不同温度等温淬火后试验钢的膨胀量-时间曲线
图8  不同温度等温淬火后试验钢的工程应力-应变曲线和U型缺口冲击吸收功
No.Yield strength / MPaUltimate tensile strength / MPaElongation / %Impact energy / J
250#1352 ± 21.71770 ± 15.211.6 ± 0.341.0 ± 1.6
280#1399 ± 15.11708 ± 21.212.3 ± 0.351.6 ± 2.0
310#1266 ± 11.41550 ± 31.413.0 ± 0.255.6 ± 2.5
表3  不同温度等温淬火后试验钢的力学性能
图9  拉伸断口的宏观形貌
图10  冲击断口的形貌
图11  冲击断口处二次裂纹的EBSD图像
[1] Lu T, Li W Y, Wang C L, et al. Friction welding of two carbon low alloy steels 42CrMo and 36Mn2V: effects of forging pressure and post-weld heat treatment on microstructure and mechanical properties [J]. Weld World, 2025, 69: 383
[2] Wang H J, Wang X Q, Tian Y J, et al. Simulation study of turning-ultrasonic rolling compound processing for 42CrMo steel [J]. Sci. Rep., 2024, 14: 23088
[3] Ai M P. Improvement of heat treatment and hot-dip galvanizing process for 42CrMo steel multisection draw-bar [J]. Heat Treat. Met., 2009, 34(5): 103
[3] 艾明平. 42CrMo钢多节拉杆热处理及热浸镀锌工艺改进 [J]. 金属热处理, 2009, 34(5): 103
[4] Ma Z, Liu K M, Zhang L Y. Study on the structure of grind-hardened layer and parameter of hardening depth of 42CrMo steel [J]. Adv. Mat. Res., 2011, 189-193: 969
[5] Liu K M, Zhang L Y, Ma Z, et al. Research on the properties of grind-hardening and abrasion of 42CrMo steel in agricultural diesel engine crankshaft [J]. Adv. Mat. Res., 2012, 619: 567
[6] Wang G C, Jiao B, Zou J F, et al. Impact of original micro-structure on grind-hardened layer of 42CrMo steel in grind-hardening [J]. Mater. Sci. Forum, 2016, 878: 22
[7] Zhou Z J, Jiang F L, Yang F Z, et al. Novel laser cladding FeCoNiCrNb0.5Mo x high-entropy alloy coatings with excellent corrosion resistance [J]. Mater. Lett., 2023, 335: 133714
[8] Wang H J, Wang X Q, Tian Y J, et al. Study on theory and finite element simulation of ultrasonic rolling extrusion process [J]. Int. J. Adv. Manuf. Technol., 2024, 134: 1091
[9] Kabirmohammadi M, Yazdani S, Saeid T, et al. Microstructural evolution and mechanical performance of friction stir spot welded ultrafine carbide-free bainitic steel: Role of dwell time [J]. J. Mater. Res. Technol., 2024, 33: 4033
[10] Panjiar H, Murugananth M. Neural network modelling of the Nb effect on mechanical properties of the ferritic bainitic dual-phase steel [J]. Can. Metall. Quart., 2024, 63: 1093
[11] Gholambargani M, Palizdar Y, Khanlarkhani A, et al. Microstructural design and mechanical enhancement of δ-TRIP steel through Mo micro-alloying and isothermal bainitic transformation [J]. Proc. Inst. Mech. Eng., 2024, 238L: 1500
[12] Zhang Z T, Zhao G, Xiao H, et al. Effects of quenching temperature and partitioning temperature on microstructure and properties of Q&P980 steel produced by CSP process [J]. Hot Work Technol., 2024, 53(14): 93
[12] 张钟涛, 赵 刚, 肖 欢 等. 淬火温度和配分温度对CSP生产的Q&P980钢组织及性能的影响 [J]. 热加工工艺, 2024, 53(14): 93
[13] Ji H B, Wang J M, Wang Z Y, et al. Effect of martensitic variant selection on the crystallographic features of bainite/martensite multiphase structure of 42CrMo steel [J]. J. Mater. Res. Technol., 2024, 30: 9561
[14] Wang X M, Zhao A M, Bao Z Y. The mechanical properties and microstructure of 1,000 MPa grade Cu-Ni TRIP steel at different bainitic isothermal temperatures [J]. Int. J. Mater. Prod. Technol., 2022, 65: 30
[15] Wen C, Dong W, Liang H L, et al. Isothermal quenching and tempering of 42CrMo steel [J]. Heat Treat. Met., 2014, 39(12): 50
[15] 文 超, 董 雯, 梁会雷 等. 42CrMo钢的等温淬火和回火 [J]. 金属热处理, 2014, 39(12): 50
[16] Beladi H, Tari V, Timokhina I B, et al. On the crystallographic characteristics of nanobainitic steel [J]. Acta Mater., 2017, 127: 426
[17] Liu J W, Wei S T, Lu S P. Bainite nucleation mechanism and mechanical properties in low carbon bainite deposited metals with different nickel additions [J]. Mater. Sci. Eng., 2022, 857A: 144036
[18] Wang P, Song Z C, Lin Y C, et al. The nucleation mechanism of martensite and its interaction with dislocation dipoles in dual-phase high-entropy alloys [J]. J. Alloy. Compd., 2022, 909: 164685
[19] Lin S, Borgenstam A, Stark A, et al. Effect of Si on bainitic transformation kinetics in steels explained by carbon partitioning, carbide formation, dislocation densities, and thermodynamic conditions [J]. Mater. Charact., 2022, 185: 111774
[20] Liu M, Hu H J, Kern Maximilian K, et al. Effect of integrated austempering and Q&P treatment on the transformation kinetics, microstructure and mechanical properties of a medium-carbon steel [J]. Mater. Sci. Eng., 2023, 869A: 144780
[21] Zhao Z F, Wei Y G. Intrinsic characteristics of grain boundary elimination induced by plastic deformation in front of intergranular microcracks in bcc iron [J]. Int. J. Plast., 2025, 184: 104208
[22] Xing J N, Cai X, Zheng L G, et al. Effect of quenching and tempering temperature on microstructure and mechanical properties of a new medium carbon alloy steel 42CrMo4M [J]. Trans. Mater. Heat Treat., 2022, 43(5): 124
[22] 邢嘉倪, 蔡 欣, 郑雷刚 等. 淬火及回火温度对新型中碳合金钢42CrMo4M组织性能的影响 [J]. 材料热处理学报, 2022, 43(5): 124
[23] Li Z, Fu Z H, Yang C Y, et al. Improving the microstructure and impact toughness of bainite/martensite bearing steel by rare earth treatment [J]. Metall. Mater. Trans., 2024, 55A: 4965
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
[4] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[5] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[6] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[7] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[8] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[9] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[10] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[11] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[12] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[13] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[14] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[15] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.