Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (8): 576-584    DOI: 10.11901/1005.3093.2023.446
  研究论文 本期目录 | 过刊浏览 |
金属有机骨架Zn-BTC/rGO复合材料的制备和性能
谭上荣, 姚焯(), 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽
辽宁科技大学材料与冶金学院 鞍山 114051
Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites
TAN Shangrong, YAO Zhuo(), LIU Zechen, JIANG Yilei, GUO Shiqi, LI Lili
College of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
引用本文:

谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
Shangrong TAN, Zhuo YAO, Zechen LIU, Yilei JIANG, Shiqi GUO, Lili LI. Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites[J]. Chinese Journal of Materials Research, 2024, 38(8): 576-584.

全文: PDF(8033 KB)   HTML
摘要: 

用超声震荡法合成不同形貌的石墨烯负载Zn-BTC金属有机骨架材料,并将其用做电极组装超级电容器。用TG曲线、SEM观察、XRD谱、Brunauer-Emmett-Teller模型和Raman谱等手段表征材料的结构、形貌和电化学性能,使用电化学工作站和三电极体系测试了超级电容样品的电化学性能。结果表明,合成的一维棒状Zn-BTC均匀锚定在褶皱的石墨烯纳米片层上,其比电容为182.4 C·g-1 (1 A·g-1),优于石墨烯负载的二维片状Zn-BTC (139.3 C·g-1)、石墨烯(97.9 C·g-1)和一维棒状Zn-BTC (62.8 C·g-1)。使用石墨烯负载的一维棒状Zn-BTC组装的对称超级电容器,在电流密度为1 A·g-1、比容量为57.7 F·g-1、功率密度为1390 W·kg-1条件下的最大能量密度为1.99 Wh·kg-1,经过2000次充放电循环后其比容量保持率为90.3%。

关键词 复合材料金属有机骨架Zn-BTC石墨烯超级电容器    
Abstract

As electrode material for supercapacitors, graphene-supported Zn-BTC metal-organic framework materials (Zn-BTC/rGO) with different morphologies were synthesized via a simple ultrasonic vibration method. The prepared Zn-BTC/rGO materials were characterized by means of TG, SEM, XRD, BET, Raman and electrochemical workstation in terms of the structure, morphology and electrochemical property. Their capacitance performance was examined by a three-electrode system. The results show that the synthesized one-dimensional rod-like Zn-BTC is uniformly anchored to the wrinkled layer of graphene nanosheets, and the material exhibits excellent capacitance performance, with a specific capacitance of 182.4 C·g-1 (1 A·g-1), which is better than the graphene-supported two-dimensional sheet-like Zn-BTC (139.3 C·g-1), graphene (97.9 C·g-1) and simple one-dimensional rod-like Zn-BTC (62.8 C·g-1). A symmetrical supercapacitor was assembled with the graphene supported one-dimensional rod-shaped Zn-BTC, which presents excellent performance: the specific capacity of 57.7 F·g-1 at a current density of 1 A·g-1, the maximum energy density of 1.99 Wh·kg-1 at a power density of 1390 W·kg-1, and the specific capacity retention rate of 90.3% after 2000 charge-discharge cycles.

Key wordscomposite    metal organic framework    Zn-BTC    graphene    supercapacitor
收稿日期: 2023-09-08     
ZTFLH:  TB332  
基金资助:辽宁省教育厅高等院校科研项目(LJKZ0290)
通讯作者: 姚焯,副教授,yaozhuo1986@163.com,研究方向为金属有机骨架储能材料
Corresponding author: YAO Zhuo, Tel: 13029368800, E-mail: yaozhuo1986@163.com
作者简介: 谭上荣,男,2000年生,硕士生
图1  制备Zn-BTC/rGO复合材料的示意图
图2  rGO,Zn-BTC-1D,Zn-BTC/rGO-1D和Zn-BTC/rGO-2D的SEM照片
图3  rGO、Zn-BTC-1D、Zn-BTC/rGO-1D和Zn-BTC/rGO-2D样品的XRD谱
图4  rGO,Zn-BTC/rGO-1D,Zn-BTC/rGO-2D,Zn-BTC-1D样品的Raman谱
图5  Zn-BTC-1D和Zn-BTC/rGO-1D样品的TG曲线
图6  使用三电极在3 mol/L KOH电解质中Zn-BTC/rGO-1D电极样品的GCD曲线和比容量
图7  使用三电极体系在3 mol/L KOH电解质中Zn-BTC/rGO-1D在不同扫描速率(2~100 mV·s-1)时的CV曲线和比容量、CV曲线中峰A和峰B的lg(i)和lg(v)之间的线性关系、在20 mV·s-1下将储存贡献与电容行为和扩散控制过程分开以及在不同扫描速率下电容行为和扩散控制过程的贡献比
图8  rGO、Zn-BTC/rGO-1D、Zn-BTC/rGO-2D和Zn-BTC-1D电极的Nyquist图和电流密度为1 A·g-1下1000次充放电循环的比容量和容量保持率
图9  Zn-BTC/rGO-1D组装对称超级电容器器件的CV曲线、充放电曲线、比容量、循环稳定性、Nyquist图以及能量密度与功率密度的关系
1 González A, Goikolea E, Barrena J A, et al. Review on supercapacitors: technologies and materials [J]. Renew. Sustain. Energy Rev., 2016, 58: 1189
2 Melkiyur I, Rathinam Y, Kumar P S, et al. A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: origin, fundamentals, present perspectives and future aspects [J]. Renew. Sustain. Energy Rev., 2023, 173: 113106
3 Lu X F, Lin J, Huang Z X, et al. Three-dimensional nickel oxide@carbon hollow hybrid networks with enhanced performance for electrochemical energy storage [J]. Electrochim. Acta, 2015, 161: 236
4 Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, et al. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors [J]. Coord. Chem. Rev., 2020, 422: 213441
5 Niu L, Wu T Z, Chen M, et al. Conductive metal-organic frameworks for supercapacitors [J]. Adv. Mater., 2022, 34(52): 2200999
6 Goh S H, Lau H S, Yong W F. Metal-organic frameworks (MOFs)‐based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications [J]. Small, 2022, 18(20): 2107536
7 Yao Z, Qu D L, Guo Y X, et al. Bimetal MOFs synthesized by one-step synthesize method and its catalytic performance for low-temperature selective catalytic reduction [J]. J. Synth. Cryst., 2019, 48(4): 682
7 姚 焯, 曲殿利, 郭玉香 等. 一步合成法制备双金属有机骨架材料及其低温选择性脱硝催化性能 [J]. 人工晶体学报, 2019, 48(4): 682
8 Shrestha N K, Patil S A, Cho S, et al. Cu-Fe-NH2 based metal-organic framework nanosheets via drop-casting for highly efficient oxygen evolution catalysts durable at ultrahigh currents [J]. J. Mater. Chem., 2020, 8A(46) : 24408
9 Patil S A, Shrestha N K, Inamdar A I, et al. Bimetallic Cu/Fe MOF-based nanosheet film via binder-free drop-casting route: a highly efficient urea-electrolysis catalyst [J]. Nanomaterials, 2022, 12: 1916
10 Lu X F, Gu L F, Wang J W, et al. Bimetal‐organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high‐performance electrocatalysts for oxygen evolution reaction [J]. Adv. Mater., 2017, 29(3): 1604437
11 Ding M L, Cai X C, Jiang H L. Improving MOF stability: approaches and applications [J]. Chem. Sci., 2019, 10(44): 10209
doi: 10.1039/c9sc03916c pmid: 32206247
12 Ramaswamy P, Wong N E, Shimizu G K H. MOFs as proton conductors-challenges and opportunities [J]. Chem. Soc. Rev., 2014, 43(16): 5913
doi: 10.1039/c4cs00093e pmid: 24733639
13 Zhu L L, Huang B C, Wang W H, et al. Low-temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers [J]. Catal. Commun., 2011, 12(6): 394
14 Pradhan B K, Sandle N K. Effect of different oxidizing agent treatments on the surface properties of activated carbons [J]. Carbon, 1999, 37(8): 1323
15 Valdés-Solıs T, Marbán G, Fuertes A B. Low-temperature SCR of NO x with NH3 over carbon-ceramic supported catalysts [J]. Appl. Catal., 2003, 46B(2) : 261
16 Farghali A A, Bahgat M, El Rouby W M A, et al. Preparation, decoration and characterization of graphene sheets for methyl green adsorption [J]. J. Alloys Compd., 2013, 555: 193
17 Pu X P, Zhang D F, Gao Y Y, et al. One-pot microwave-assisted combustion synthesis of graphene oxide-TiO2 hybrids for photodegradation of methyl orange [J]. J. Alloys Compd., 2013, 551: 382
18 Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors [J]. J. Chem. Sci., 2008, 120(1): 9
19 Yoo J J, Balakrishnan K, Huang J S, et al. Ultrathin planar graphene supercapacitors [J]. Nano Lett., 2011, 11(4): 1423
doi: 10.1021/nl200225j pmid: 21381713
20 Jiang B J, Tian C G, Wang L, et al. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: simultaneous doping and reduction [J]. Appl. Surf. Sci., 2012, 258(8): 3438
21 Barua A, Mehra P, Paul A. Understanding integrated graphene-MOF nanostructures as binder- and additive-free high-performance supercapacitors at commercial scale mass loading [J]. ACS Appl. Energy Mater., 2021, 4(12): 14249
22 Thi Q V, Patil S A, Katkar P K, et al. Electrochemical performance of zinc-based metal-organic framework with reduced graphene oxide nanocomposite electrodes for supercapacitors [J]. Synth. Met., 2022, 290: 117155
23 Bao L Q, Nguyen T H, Fei H J, et al. Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors [J]. Electrochim. Acta, 2021, 367: 137563
24 Tan S R, Yao Z, Huang H, et al. Mn-Ce oxide nanoparticles supported on nitrogen-doped graphene for low-temperature catalytic reduction of NO x : de-nitration characteristics and kinetics [J]. Crystals, 2023, 13(2): 313
25 Du B S, Yan F F, Lin X H, et al. A bottom-up sonication-assisted synthesis of Zn-BTC MOF nanosheets and the ppb-level acetone detection of their derived ZnO nanosheets [J]. Sens. Actuators, 2023, 375: 132854
26 Wu J S, Li Z, Tan H X, et al. Highly selective separation of rare earth elements by Zn-BTC metal-organic framework/nanoporous graphene via in situ green synthesis [J]. Anal. Chem., 2021, 93(3): 1732
27 Jorio A, Saito R J J o A P. Raman spectroscopy for carbon nanotube applications [J]. J. Appl. Phys., 2021, 129(2): 1569
28 Zhang W. 2-aminoanthraquinone anchored on N-doped reduced graphene oxide for symmetric supercapacitor with boosting energy density [J]. Electrochim. Acta, 2023, 448: 142194
29 Li J, Yang Q M, Zhitomirsky I J J o P S. Nickel foam-based manganese dioxide-carbon nanotube composite electrodes for electrochemical supercapacitors [J]. J. Power Sources, 2008, 185(2): 1569
30 Wu X L. Template-free synthesis and supercapacitance performance of a hierachically porous oxygen-enriched carbon material [J]. J. Nanosci. Nanotechnol., 2011, 11(3): 1897
31 Ma F. Synthesis and application of naphthalene diimide as an organic molecular electrode for asymmetric supercapacitors with high energy storage [J]. Adv. Mater. Interface, 2021, 8(10): 2002161
[1] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[2] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[3] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[4] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[5] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[6] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[7] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[8] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[9] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[10] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[11] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[12] 徐东卫, 王瑞琪, 陈平. 石墨烯基吸波复合材料研究进展[J]. 材料研究学报, 2024, 38(1): 1-13.
[13] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[14] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[15] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.