材料研究学报, 2024, 38(8): 576-584 DOI: 10.11901/1005.3093.2023.446

研究论文

金属有机骨架Zn-BTC/rGO复合材料的制备和性能

谭上荣, 姚焯,, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽

辽宁科技大学材料与冶金学院 鞍山 114051

Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites

TAN Shangrong, YAO Zhuo,, LIU Zechen, JIANG Yilei, GUO Shiqi, LI Lili

College of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China

通讯作者: 姚焯,副教授,yaozhuo1986@163.com,研究方向为金属有机骨架储能材料

收稿日期: 2023-09-08   修回日期: 2023-10-10  

基金资助: 辽宁省教育厅高等院校科研项目(LJKZ0290)

Corresponding authors: YAO Zhuo, Tel: 13029368800, E-mail:yaozhuo1986@163.com

Received: 2023-09-08   Revised: 2023-10-10  

Fund supported: Scientific Study Project for Institutes of Higher Learning, Ministry of Education, Liaoning Province(LJKZ0290)

作者简介 About authors

谭上荣,男,2000年生,硕士生

摘要

用超声震荡法合成不同形貌的石墨烯负载Zn-BTC金属有机骨架材料,并将其用做电极组装超级电容器。用TG曲线、SEM观察、XRD谱、Brunauer-Emmett-Teller模型和Raman谱等手段表征材料的结构、形貌和电化学性能,使用电化学工作站和三电极体系测试了超级电容样品的电化学性能。结果表明,合成的一维棒状Zn-BTC均匀锚定在褶皱的石墨烯纳米片层上,其比电容为182.4 C·g-1 (1 A·g-1),优于石墨烯负载的二维片状Zn-BTC (139.3 C·g-1)、石墨烯(97.9 C·g-1)和一维棒状Zn-BTC (62.8 C·g-1)。使用石墨烯负载的一维棒状Zn-BTC组装的对称超级电容器,在电流密度为1 A·g-1、比容量为57.7 F·g-1、功率密度为1390 W·kg-1条件下的最大能量密度为1.99 Wh·kg-1,经过2000次充放电循环后其比容量保持率为90.3%。

关键词: 复合材料; 金属有机骨架; Zn-BTC; 石墨烯; 超级电容器

Abstract

As electrode material for supercapacitors, graphene-supported Zn-BTC metal-organic framework materials (Zn-BTC/rGO) with different morphologies were synthesized via a simple ultrasonic vibration method. The prepared Zn-BTC/rGO materials were characterized by means of TG, SEM, XRD, BET, Raman and electrochemical workstation in terms of the structure, morphology and electrochemical property. Their capacitance performance was examined by a three-electrode system. The results show that the synthesized one-dimensional rod-like Zn-BTC is uniformly anchored to the wrinkled layer of graphene nanosheets, and the material exhibits excellent capacitance performance, with a specific capacitance of 182.4 C·g-1 (1 A·g-1), which is better than the graphene-supported two-dimensional sheet-like Zn-BTC (139.3 C·g-1), graphene (97.9 C·g-1) and simple one-dimensional rod-like Zn-BTC (62.8 C·g-1). A symmetrical supercapacitor was assembled with the graphene supported one-dimensional rod-shaped Zn-BTC, which presents excellent performance: the specific capacity of 57.7 F·g-1 at a current density of 1 A·g-1, the maximum energy density of 1.99 Wh·kg-1 at a power density of 1390 W·kg-1, and the specific capacity retention rate of 90.3% after 2000 charge-discharge cycles.

Keywords: composite; metal organic framework; Zn-BTC; graphene; supercapacitor

PDF (8033KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584 DOI:10.11901/1005.3093.2023.446

TAN Shangrong, YAO Zhuo, LIU Zechen, JIANG Yilei, GUO Shiqi, LI Lili. Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites[J]. Chinese Journal of Materials Research, 2024, 38(8): 576-584 DOI:10.11901/1005.3093.2023.446

超级电容器具有较高的充放电速率、能量密度和库伦效率、较长的循环寿命、较宽的操作温度窗口和较高的安全性,引起了极大的关注[1~3]。超级电容器的比电容、能量密度和功率密度,与其电极材料的性能有密切的关系。超级电容器可分为两类,即双电层电容器(EDLC)和赝电容电容器(PC)。在EDLC中,电荷在电极/电解质界面可逆地积累/释放,而在PC中电荷通过表面的氧化还原反应存储在电极表面和可能的亚表面。EDLC和PC在电荷存储机制上的差异,使其具有不同的性能。与PC相比,EDLC具有中等能量密度和较长的循环寿命。

金属有机骨架材料(MOFs)是一种由有机配体与金属中心节点结合的新型多孔材料。MOFs具有很大的比表面积、可调节的孔隙结构、良好的化学稳定性和热稳定性,在能量储存[4,5]、气体分离[6]和催化[7~10]等领域有广阔的应用前景。MOFs具有模块化结构、丰富的主客体特性和多功能性,但是其导电性较差和电化学活性较低,不能直接用作超级电容器的电极[11,12]

石墨烯是一种具有独特二维结构的碳同素异形体材料,具有优良的机械性能、较高的电子迁移率(2 × 105 cm2/(v·s))和电导率(106 S/m)以及较大的比表面(2630 m2/g)[13~17],可用做MOFs载体[18~20]。用做MOFs载体时,石墨烯的π-π共轭结构能促进电子的自由移动,使复合材料的导电性能及电化学性能提高[21]。Thi等[22]用水热法制备的Zn-MOF-rGO20复合材料电极在1 A·g-1的电流密度下比电容为205 C·g-1。同时,由Zn-MOF-rGO20电极组成的对称器件其比电容为82.5 F·g-1。Nguyen等[23]用水热法制备的rGO/Zn-MOF@PANI复合电极材料,电流密度为0.1 A·g-1时比电容为372 F·g-1

目前关于Zn-BTC在超级电容器中应用的报道较少。本文用超声震荡法制备不同形貌的Zn-BTC/石墨烯复合材料,研究其作为超级电容器对称器件的电化学性能。

1 实验方法

1.1 实验用材料

分析纯化学试剂:ZnO、H2SO4、NaNO3、KMnO4、DMF、PTFE、乙炔炭黑以及阿拉丁试剂;300目的鳞片石墨和实验室自制去离子水。

1.2 石墨烯的制备

用改进的Hummers方法制备氧化石墨烯(Graphene oxide,GO)[24]。先在烧杯中加入1 g鳞片石墨(纯度99.9%)和0.5 g硝酸钠,然后加入70 mL浓H2SO4,在冰浴条件下搅拌2 h;向混合溶液中缓慢加入18 g的KMnO4,在冰浴条件下反应2 h;然后撤去冰浴,将混合溶液转移到35℃水浴条件下继续反应1 h;向上述反应体系中缓慢加入230 mL去离子水,控制反应温度为98℃反应30 min;最后加入20 mL双氧水移除未反应的KMnO4,此时溶液呈亮黄色,反应1 h。用离心的方式用去离子水彻底洗涤得到的反应产物以去除其中未反应的杂质离子,使溶液呈中性。最后将得到的产物在60℃干燥24 h得到GO样品。将制备的GO样品在350℃和5%氢氩混合气氛中焙烧2 h,得到石墨烯(Graphene,rGO)。

1.3 一维和二维Zn-BTC材料的制备

参考文献[25]的工作制备Zn-BTC材料:将不同质量(630 mg和126 mg)的1,3,5-苯三甲酸与30 mL无水乙醇在烧杯中混合后进行超声震荡使其完全溶解,再将243 mg (3 mmol)的纳米氧化锌和30 mL去离子水加入烧杯并在室温下超声混合8 h。将溶液过滤后得到的产物在110℃干燥12 h,制得一维Zn-BTC(Zn-BTC-1D)和二维Zn-BTC(Zn-BTC-2D)材料。

1.4 石墨烯负载一维、二维Zn-BTC复合材料的制备

在上述制备Zn-BTC-1D和Zn-BTC-2D材料的过程中按照每1 mmol Zn2+:30 mg GO的比例添加GO,将超声8 h后溶液过滤后得到的产物干燥(110℃)后在300℃和5%氢氩混合气氛中焙烧2 h,分别得到Zn-BTC/rGO-1D和Zn-BTC/rGO-2D两种复合材料。复合材料的制备过程如图1所示。

图1

图1   制备Zn-BTC/rGO复合材料的示意图

Fig.1   Schematic illustration of the synthesis process of Zn-BTC/rGO nanocomposite


1.5 性能表征

用XRD谱(PANalytical X'pert with CuKαλ =0.154178 nm)表征样品的物相;用场发射扫描电子显微镜(FESEM, ZEISS-ΣIGMA HD)观察样品的形貌;用JW-BK112型比表面积和微孔分析仪分析样品的比表面积,先将样品在200℃真空脱附处理2 h,以N2为吸附质在-196℃测试。使用Brunauer-Emmett-Teller (BET)模型计算样品的比表面积。用拉曼光谱仪(NEXUS 670)观察样品的化学键。用同步热分析仪(NETZSCH,STA449F3)在氮气气氛中对样品进行综合热分析,初始温度45℃,终止温度为600℃,升温速率为10℃/min。

在80 mg活性物质(rGO,Zn-BTC/rGO-1D,Zn-BTC/rGO-2D,Zn-BTC-1D)、10 mg粘结剂(聚四氟乙烯(PTFE))和10 mg导电剂(炭黑)中加入适量的N-甲基吡咯烷酮(NMP),充分研磨后得到分散均匀的浆料。把浆料均匀地涂敷在泡沫镍集流体(涂敷面积约为1 cm × 1 cm,质量约为2 mg)上,将其在120℃真空干燥12 h后得到工作电极。

使用CHI 660E电化学工作站进行电化学表征,采用Hg/HgO为参比电极、铂片电极为对电极、活性物质为工作电极,电解液为3 mol/L的 KOH。采用循环伏安法(CV)、电化学阻抗法(EIS)、恒流充放电法(GCD)和循环稳定性试验测试电化学性能。EIS测量频率范围为0.001~100 kHz,振幅为5.0 mV,参考开路电位。

比容量为

C=Itm
C=IVdVmV

用活性物质极片组装成两电极Swagelok型对称超级电容器,水系电解液为3 mol/L KOH。用隔膜将其隔开。对称超级电容器的器件的比容量、能量密度和功率密度分别为

Ccell=ItmV
E=12CcellV2
P=Et

式中C为电极材料比容量,C·g-1Ccell为超级电容器器件比容量,F·g-1I为恒定放电电流,A;Δt为放电时间,s;V为电势,V;m为活性物质质量,g;E为能量密度,Wh·kg-1P为功率密度,W·kg-1

2 结果和讨论

2.1 微观结构

图2a~d给出了rGO,Zn-BTC-1D,Zn-BTC/rGO-1D和Zn-BTC/rGO-2D样品的SEM照片。可以看出,rGO样品呈卷曲的薄片状,纳米片表面有明显的褶皱(图1a)。从图1b可见,Zn-BTC-1D材料为棒状的一维结构,直径约为4~6 μm,长度约为8~20 μm,样品表面有明显的裂纹和缝隙。由Zn-BTC/rGO-1D样品的SEM照片(图2c)可见,rGO与Zn-BTC-1D正负电荷之间的相互作用使Zn-BTC-1D均匀地锚定在rGO纳米片表面,阻止了rGO纳米片层堆叠团聚。在Zn-BTC/rGO-1D样品中,Zn-BTC纳米棒的粒径小于其在单纯MOFs中的粒径(图2b),直径为0.3~1.2 µm,长度为1.5~7.0 µm。rGO可能限制了反应过程中Zn2+和有机配体的反应生长,减小了纳米复合材料中Zn-BTC-1D的粒径。由图2d可观察到,Zn-BTC-2D样品具有明显的二维结构,Zn-BTC纳米片堆叠在rGO表面。

图2

图2   rGO,Zn-BTC-1D,Zn-BTC/rGO-1D和Zn-BTC/rGO-2D的SEM照片

Fig.2   SEM images of rGO (a), Zn-BTC-1D (b), Zn-BTC/rGO-1D (c) and Zn-BTC/rGO-2D (d)


图3给出了rGO、Zn-BTC-1D、Zn-BTC/rGO-1D和Zn-BTC/rGO-2D的XRD谱。由图3可见,在Zn-BTC-1D样品的谱中2θ = 13.7°、16.8°、18.9°、26.1°出现典型的特征峰,与文献[26]报道的标准谱吻合;同时,这些较强的特征峰表明所制备的样品具有完整的晶体结构。在rGO的XRD谱中2θ = 26.5°(002)出现了典型的rGO特征峰,表明GO已经完全还原为rGO。

图3

图3   rGO、Zn-BTC-1D、Zn-BTC/rGO-1D和Zn-BTC/rGO-2D样品的XRD谱

Fig.3   XRD patterns of rGO, Zn-BTC-1D, Zn-BTC/rGO-1D and Zn-BTC/rGO-2D samples


图4给出了样品结构缺陷的变化。可以看出,rGO的D和G特征峰分别位于1320和1588 cm-1处。D特征峰是样品的结构缺陷产生的,G特征峰是sp2碳原子平面内的拉伸振动产生的,表明石墨结构的对称性和完整性[27,28]。D带和G带之间的积分强度比(ID/IG),与无序度和缺陷程度成正比。rGO、Zn-BTC/rGO-1D、Zn-BTC/rGO-2D和Zn-BTC-1D的ID/IG值分别为1.96、1.61和1.37和0.62。这一结果表明,rGO的引入提高了这种复合材料的缺陷和无序程度。这些增加的缺陷成为化学反应的活性位点和吸附位点,使电极材料的电化学活性提高。

图4

图4   rGO,Zn-BTC/rGO-1D,Zn-BTC/rGO-2D,Zn-BTC-1D样品的Raman谱

Fig.4   Raman patterns of rGO, Zn-BTC/rGO-1D, Zn-BTC/rGO-2D and Zn-BTC-1D samples


图5给出了Zn-BTC/rGO-1D和Zn-BTC-1D的TG曲线。可以看出,Zn-BTC-1D的TG曲线在升温过程中出现两个质量损失阶梯。温度升高到165℃,Zn-BTC-1D出现约10%的质量损失,是样品表面的吸附水和孔道内残留的有机溶剂分子挥发所致。从335℃开始有机骨架开始分解,温度高于450℃时Zn-BTC-1D发生剧烈的质量损失,对应材料内部的结晶有机材料分解。在600℃反应结束,Zn-BTC-1D和Zn-BTC/rGO-1D样品残留的质量分别为42.9%和65.6%。由此可以推算,Zn-BTC/rGO-1D样品中Zn-BTC的质量分数为60.3%。

图5

图5   Zn-BTC-1D和Zn-BTC/rGO-1D样品的TG曲线

Fig.5   TG curves of Zn-BTC-1D and Zn-BTC/rGO-1D samples


2.2 电化学性能

图6a给出了rGO、Zn-BTC-1D、Zn-BTC/rGO-2D和Zn-BTC/rGO-1D电极在电流密度为1 A·g-1条件下的恒流充放电(GCD)曲线。可以看出,Zn-BTC-1D样品的GCD曲线呈现出明显的非对称性,当充电电压在0~0.2 V时出现平台。另外三种样品的曲线均呈对称的线性三角形形状,表明其优异的电化学可逆性和良好的库伦效率。rGO的引入,使不同形貌的Zn-BTC的比表面积和导电性能提高。计算结果表明,rGO、Zn-BTC-1D、Zn-BTC/rGO-1D、Zn-BTC/rGO-2D电极在1 A·g-1的电流密度条件下的比电容分别为97.9、62.8、182.4和139.3 C·g-1

图6

图6   使用三电极在3 mol/L KOH电解质中Zn-BTC/rGO-1D电极样品的GCD曲线和比容量

Fig.6   GCD curves of different samples at current density of 1 A·g-1 (a), GCD curves of Zn-BTC/rGO-1D electrode at different current densities from 1 to 40 A·g-1 (b, c), specific capacity at various current densities for all electrodes at the current density ranging from 1 to 40 A·g-1 (d) in 3 mol/L KOH electrolyte using three-electrode


图6b、c给出了Zn-BTC/rGO-1D样品在不同电流密度(1~40 A·g-1)下的倍率性能。可以看出,在不同的电流密度下GCD曲线仍然显示出对称的三角形,表明其具有优异的双电层电容。图3d给出了不同电流密度下四种电极样品的比容量。可以看出,作为不同形貌Zn-BTC的载体,rGO对样品的电容性能有显著的影响。单纯的Zn-BTC/1D样品的导电性较差,比电容量由1 A·g-1时的62.8 C·g-1下降到40 A·g-1的30.3 C·g-1。掺杂rGO的Zn-BTC/rGO-1D其比电容量分别提高到182.4和110.2 C·g-1,相应的电容保持率为60.4%,表明其具有优异倍率性能。

图7a、b分别给出了使用三电极体系Zn-BTC/rGO-1D电极不同扫描速率(2~100 mV·s-1)的循环伏安曲线和相应的比电容量。可以看出,随着扫描速率从2 mV·s-1提高到100 mV·s-1其CV曲线从标准的矩形转变为椭圆形。这个结果,可归因于那些远离rGO导电路径的Zn-BTC纳米棒产生了较大的内阻[29,30]。扫描速率为2 mV·s-1时,该电极的比电容量为298.9 C·g-1。随着扫描速率提高到100 mV·s-1电极仍保持99.1 C·g-1的高比容量,电容保持率为33%。根据峰值电流(i)随扫描速率(v)的变化,可揭示电极材料的动态信息。根据

i=avb
lgi=lga+blgv

可判断反应是电容行为(表面控制)或扩散控制过程[31]。式中ab是两个可调参数,可根据lgi与lgʋ的关系求得。b = 1意味着反应过程是电容行为,b = 0.5意味着电化学反应是扩散控制的过程。如果0.5 < b < 1,则表明电化学行为由电容行为和扩散控制过程组成。图7c给出了CV曲线中峰A和峰B的lg(i)和lg(ʋ)之间的线性关系。可以看出,峰值A和峰值B的b值,即bA = 0.68876和bB = 0.6606,表明在充放电过程中电容行为和扩散行为共存。电容行为和扩散行为对总比容量的贡献为

i=k1v+k2v1/2
i/v1/2=k1v1/2+k2

其中k1k2可根据v1/2i/v1/2的拟合线性曲线确定。电容行为和扩散控制过程对容量贡献,分别与k1k2对应。图7d、e给出了拟合计算结果。随着扫描速率从2 mV·s-1提高到100 mV·s-1,电容行为在总比容量中的比例从22.52%提高到67.93%。这表明,随着扫描速率的提高离子/电子的转移和扩散过程变得越来越受约束,从而更多地依赖更快的过程(扩散控制过程)产生的容量。

图7

图7   使用三电极体系在3 mol/L KOH电解质中Zn-BTC/rGO-1D在不同扫描速率(2~100 mV·s-1)时的CV曲线和比容量、CV曲线中峰A和峰B的lg(i)和lg(v)之间的线性关系、在20 mV·s-1下将储存贡献与电容行为和扩散控制过程分开以及在不同扫描速率下电容行为和扩散控制过程的贡献比

Fig.7   Using three-electrode system in 3 mol/L KOH electrolyte CV curves (a) and specific capacity of Zn-BTC/rGO-1D electrode at various scan rates (2~100 mV·s-1) (b), linear relationships between lg(i) and lg(v) for peak A and peak B in CV curves (c), separation of storage contribution from the capacitive behavior and diffusion-controlled processes at 20 mV·s-1(d) and the contribution ratio of capacitive behavior and diffusion-controlled process at different scan rates (e)


图8a给出了四种复合电极样品的Nyquist阻抗图,高频区阻抗曲线与实轴的截距表示等效串联电阻Rs,包括电极材料的内部电阻、电解液的离子电阻和集流体之间的接触电阻。可以看出,Zn-BTC/rGO-1D的曲线在高频区的半圆直径最小,低频区尾部曲线接近于垂直。这表明,Zn-BTC/rGO-1D超级电容器有较快的电荷转移、较高的离子扩散速度、最低的等效串联电阻,以及接近理想EDLC的电容行为。图8b给出了四种电极材料的循环性能。可以看出,在电流密度为1 A·g-1的条件下循环1000次后rGO电容器的容量保持率为96.9%,而Zn-BTC/rGO-1D、Zn-BTC/rGO-2D、及Zn-BTC-1D三种超级电容器的容量保持率分别为94.1%、93.0%和68.8%。这表明,本文合成的Zn-BTC/rGO-1D复合材料的循环稳定性随着rGO添加量的增加而提高,但是相应的比电容减小。

图8

图8   rGO、Zn-BTC/rGO-1D、Zn-BTC/rGO-2D和Zn-BTC-1D电极的Nyquist图和电流密度为1 A·g-1下1000次充放电循环的比容量和容量保持率

Fig.8   Nyquist plot (a) and specific capacitance and capacitance retention at 1 A·g-1 after 1000 cycles (b) of rGO, Zn-BTC/rGO-1D, Zn-BTC/rGO-2D and Zn-BTC-1D electrodes


为了进一步评估合成Zn-BTC/rGO-1D材料在实际应用中的性能,将其组装成对称超级电容器器件(SSD),电解质溶液为3 mol/L的KOH,电压窗口为0~0.7 V。在不同扫描速率下(2~100 mV·s-1) Zn-BTC/rGO-1D样品的CV曲线均呈现相似的矩形,在CV测试过程中主要以EDLC提供电容性能,且具备良好的可逆性,结果如图9a所示。该SSD在不同电流密度下(1~20 A·g-1)GCD测试曲线如图9b所示,可见其类似对称三角形的充放电曲线,进一步验证了充放电过程有良好的可逆充放电性能。图9c给出了不同电流密度下SSD的比容量。根据 公式(1)可计算出,在电流密度为1 A·g-1的条件下其比容量为57.7 F·g-1,电流密度提高到20 A·g-1仍保留17.8 F·g-1的比容量。在电流密度为1 A·g-1充放电循环2000次,其比容量保持率高达90.3%(图9d)。Nyquist曲线(图9e)表明,此SSD具有较低的内阻(约为5 Ω)。功率密度1390 W·kg-1时,能量密度的最大值为1.99 Wh·kg-1 (图9f)。

图9

图9   Zn-BTC/rGO-1D组装对称超级电容器器件的CV曲线、充放电曲线、比容量、循环稳定性、Nyquist图以及能量密度与功率密度的关系

Fig.9   CV curves at different scanning rates ranging from 2 mV·s-1 to 100 mV·s-1 (a); GCD curves at different current densities ranging from 1 A·g-1 to 20 A·g-1 (b); specific capacity at different current densities ranging from 1 A·g-1 to 20 A·g-1 (c); cycling performance after 2000 cycles (d); Nyquist plot (e) and (f) Ragon plot for symmetrical supercapacitor device assembled with Zn-BTC/rGO-1D


3 结论

(1) 用超声震荡法调节有机配体与金属离子的配比可制备出不同形貌结构可用作为超级电容器的电极的Zn-BTC复合石墨烯纳米复合材料。添加石墨烯载体可提高电极材料的导电性及电化学性能,Zn-BTC/rGO-1D电极的比电容可达182.4 C·g-1 (电流密度为1 A·g-1)。

(2) 使用这种复合材料电极组装的对称超级电容器器件,其功率密度1390 W·kg-1时能量密度最大为1.99 Wh·kg-1,在1 A·g-1电流密度下初始比容量为57.7 F·g-1,2000次充放电循环后比容量的保持率为90.3%。

参考文献

González A, Goikolea E, Barrena J A, et al.

Review on supercapacitors: technologies and materials

[J]. Renew. Sustain. Energy Rev., 2016, 58: 1189

[本文引用: 1]

Melkiyur I, Rathinam Y, Kumar P S, et al.

A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: origin, fundamentals, present perspectives and future aspects

[J]. Renew. Sustain. Energy Rev., 2023, 173: 113106

Lu X F, Lin J, Huang Z X, et al.

Three-dimensional nickel oxide@carbon hollow hybrid networks with enhanced performance for electrochemical energy storage

[J]. Electrochim. Acta, 2015, 161: 236

[本文引用: 1]

Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, et al.

A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors

[J]. Coord. Chem. Rev., 2020, 422: 213441

[本文引用: 1]

Niu L, Wu T Z, Chen M, et al.

Conductive metal-organic frameworks for supercapacitors

[J]. Adv. Mater., 2022, 34(52): 2200999

[本文引用: 1]

Goh S H, Lau H S, Yong W F.

Metal-organic frameworks (MOFs)‐based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications

[J]. Small, 2022, 18(20): 2107536

[本文引用: 1]

Yao Z, Qu D L, Guo Y X, et al.

Bimetal MOFs synthesized by one-step synthesize method and its catalytic performance for low-temperature selective catalytic reduction

[J]. J. Synth. Cryst., 2019, 48(4): 682

[本文引用: 1]

姚 焯, 曲殿利, 郭玉香 .

一步合成法制备双金属有机骨架材料及其低温选择性脱硝催化性能

[J]. 人工晶体学报, 2019, 48(4): 682

[本文引用: 1]

Shrestha N K, Patil S A, Cho S, et al.

Cu-Fe-NH2 based metal-organic framework nanosheets via drop-casting for highly efficient oxygen evolution catalysts durable at ultrahigh currents

[J]. J. Mater. Chem., 2020, 8A(46) : 24408

Patil S A, Shrestha N K, Inamdar A I, et al.

Bimetallic Cu/Fe MOF-based nanosheet film via binder-free drop-casting route: a highly efficient urea-electrolysis catalyst

[J]. Nanomaterials, 2022, 12: 1916

Lu X F, Gu L F, Wang J W, et al.

Bimetal‐organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high‐performance electrocatalysts for oxygen evolution reaction

[J]. Adv. Mater., 2017, 29(3): 1604437

[本文引用: 1]

Ding M L, Cai X C, Jiang H L.

Improving MOF stability: approaches and applications

[J]. Chem. Sci., 2019, 10(44): 10209

DOI      PMID      [本文引用: 1]

Metal-organic frameworks (MOFs) have been recognized as one of the most important classes of porous materials due to their unique attributes and chemical versatility. Unfortunately, some MOFs suffer from the drawback of relatively poor stability, which would limit their practical applications. In the recent past, great efforts have been invested in developing strategies to improve the stability of MOFs. In general, stable MOFs possess potential toward a broader range of applications. In this review, we summarize recent advances in the design and synthesis of stable MOFs and MOF-based materials synthesis and/or post-synthetic structural processing. Also, the relationships between the stability and functional applications of MOFs are highlighted, and finally, the subsisting challenges and the directions that future research in this field may take have been indicated.This journal is © The Royal Society of Chemistry 2019.

Ramaswamy P, Wong N E, Shimizu G K H.

MOFs as proton conductors-challenges and opportunities

[J]. Chem. Soc. Rev., 2014, 43(16): 5913

DOI      PMID      [本文引用: 1]

Proton conducting materials have garnered immense attention for their role as electrolytes in fuel cells. Metal Organic Frameworks (MOFs) and coordination polymers have recently been investigated as possible candidates for proton-conducting applications. Their crystallinity, chemically functionalizable pores and options for systematic structural variation are some of the factors that allow for the targeted design of better proton conductors operating over a wide variety of temperatures and/or humidity conditions. This review will examine selected examples from this nascent field, and will focus on the design and synthesis of proton conducting MOFs, their properties and conditions under which they operate.

Zhu L L, Huang B C, Wang W H, et al.

Low-temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers

[J]. Catal. Commun., 2011, 12(6): 394

[本文引用: 1]

Pradhan B K, Sandle N K.

Effect of different oxidizing agent treatments on the surface properties of activated carbons

[J]. Carbon, 1999, 37(8): 1323

Valdés-Solıs T, Marbán G, Fuertes A B.

Low-temperature SCR of NO x with NH3 over carbon-ceramic supported catalysts

[J]. Appl. Catal., 2003, 46B(2) : 261

Farghali A A, Bahgat M, El Rouby W M A, et al.

Preparation, decoration and characterization of graphene sheets for methyl green adsorption

[J]. J. Alloys Compd., 2013, 555: 193

Pu X P, Zhang D F, Gao Y Y, et al.

One-pot microwave-assisted combustion synthesis of graphene oxide-TiO2 hybrids for photodegradation of methyl orange

[J]. J. Alloys Compd., 2013, 551: 382

[本文引用: 1]

Vivekchand S R C, Rout C S, Subrahmanyam K S, et al.

Graphene-based electrochemical supercapacitors

[J]. J. Chem. Sci., 2008, 120(1): 9

[本文引用: 1]

Yoo J J, Balakrishnan K, Huang J S, et al.

Ultrathin planar graphene supercapacitors

[J]. Nano Lett., 2011, 11(4): 1423

DOI      PMID     

With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an "in-plane" fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 μFcm(-2), while much higher (394 μFcm(-2)) specific capacities are observed multilayer reduced graphene oxide electrodes. The performances of devices with pristine as well as thicker graphene-based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.

Jiang B J, Tian C G, Wang L, et al.

Highly concentrated, stable nitrogen-doped graphene for supercapacitors: simultaneous doping and reduction

[J]. Appl. Surf. Sci., 2012, 258(8): 3438

[本文引用: 1]

Barua A, Mehra P, Paul A.

Understanding integrated graphene-MOF nanostructures as binder- and additive-free high-performance supercapacitors at commercial scale mass loading

[J]. ACS Appl. Energy Mater., 2021, 4(12): 14249

[本文引用: 1]

Thi Q V, Patil S A, Katkar P K, et al.

Electrochemical performance of zinc-based metal-organic framework with reduced graphene oxide nanocomposite electrodes for supercapacitors

[J]. Synth. Met., 2022, 290: 117155

[本文引用: 1]

Bao L Q, Nguyen T H, Fei H J, et al.

Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors

[J]. Electrochim. Acta, 2021, 367: 137563

[本文引用: 1]

Tan S R, Yao Z, Huang H, et al.

Mn-Ce oxide nanoparticles supported on nitrogen-doped graphene for low-temperature catalytic reduction of NO x : de-nitration characteristics and kinetics

[J]. Crystals, 2023, 13(2): 313

[本文引用: 1]

Du B S, Yan F F, Lin X H, et al.

A bottom-up sonication-assisted synthesis of Zn-BTC MOF nanosheets and the ppb-level acetone detection of their derived ZnO nanosheets

[J]. Sens. Actuators, 2023, 375: 132854

[本文引用: 1]

Wu J S, Li Z, Tan H X, et al.

Highly selective separation of rare earth elements by Zn-BTC metal-organic framework/nanoporous graphene via in situ green synthesis

[J]. Anal. Chem., 2021, 93(3): 1732

[本文引用: 1]

Jorio A, Saito R J J o A P.

Raman spectroscopy for carbon nanotube applications

[J]. J. Appl. Phys., 2021, 129(2): 1569

[本文引用: 1]

Zhang W.

2-aminoanthraquinone anchored on N-doped reduced graphene oxide for symmetric supercapacitor with boosting energy density

[J]. Electrochim. Acta, 2023, 448: 142194

[本文引用: 1]

Li J, Yang Q M, Zhitomirsky I J J o P S.

Nickel foam-based manganese dioxide-carbon nanotube composite electrodes for electrochemical supercapacitors

[J]. J. Power Sources, 2008, 185(2): 1569

[本文引用: 1]

Wu X L.

Template-free synthesis and supercapacitance performance of a hierachically porous oxygen-enriched carbon material

[J]. J. Nanosci. Nanotechnol., 2011, 11(3): 1897

[本文引用: 1]

Ma F.

Synthesis and application of naphthalene diimide as an organic molecular electrode for asymmetric supercapacitors with high energy storage

[J]. Adv. Mater. Interface, 2021, 8(10): 2002161

[本文引用: 1]

/