Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (7): 508-518    DOI: 10.11901/1005.3093.2023.567
  研究论文 本期目录 | 过刊浏览 |
Zn含量对岩盐型高熵氧化物储锂性能的影响
陈诗洁1, 鲍梦凡1, 林娜1, 杨海琴1, 冒爱琴1,2()
1.安徽工业大学材料科学与工程学院 先进陶瓷研究中心 马鞍山 243032
2.先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243032
Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides
CHEN Shijie1, BAO Mengfan1, LIN Na1, YANG Haiqin1, MAO Aiqin1,2()
1.Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China
2.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Ma'anshan 243032, China
引用本文:

陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
Shijie CHEN, Mengfan BAO, Na LIN, Haiqin YANG, Aiqin MAO. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. Chinese Journal of Materials Research, 2024, 38(7): 508-518.

全文: PDF(11106 KB)   HTML
摘要: 

用溶液燃烧法制备不同Zn含量的岩盐型高熵氧化物(Co0.22Cu0.22Mg0.22Ni0.22Zn0.12)O、(Co0.2Cu0.2Mg0.2-Ni0.2Zn0.2)O和(Co0.18Cu0.18Mg0.18Ni0.18Zn0.28)O,研究了Zn离子浓度对其电化学性能的影响。结果表明:随着Zn含量的提高这类电极材料的电化学性能随之提高。(Co0.18Cu0.18Mg0.18Ni0.18Zn0.28)O电极具有优异的电化学性能,其原因是较高的晶格畸变和氧空位浓度使其本征电导率和锂离子扩散系数略微提高。电流密度为200 mA·g-1时这种材料的初始放电比容量(777.06 mAh·g-1)和循环稳定性(循环150圈后容量保持率接近100%)最高,电流密度为3000 mA·g-1时比容量为140.2 mAh·g-1时其倍率性能优异,即使电流密度为1000 mA·g-1其循环150圈 (比容量198.1 mAh·g-1)也表现出最高的循环稳定性。(Co0.18Cu0.18Mg0.18Ni0.18Zn0.28)O电极优异的电化学性能和循环稳定性,可归因于Zn元素在氧化还原反应中完全转化,含量较高的Zn提供了更多的容量,适当的氧空位浓度和晶格畸变程度为锂离子传输提供了更多的通道。

关键词 无机非金属材料锂离子电池不同Zn含量岩盐型高熵氧化物晶格畸变协同作用    
Abstract

Rock salt-type high entropy oxide (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O as anode material for lithium-ion battery has attracted widespread attention due to its unique synergistic effect of multiple elements. Zn and part of Co elements provide the main source of electrode capacities, while MgO stabilizes the crystal structure, Ni, Cu, and the reduced residual Co may form a 3-dimensional network to enhance the conductivities of the oxide. In this study, a series of rock salt-type high entropy oxides (Co0.22Cu0.22Mg0.22Ni0.22Zn0.12)O,(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O and (Co0.18Cu0.18Mg0.18Ni0.18Zn0.28)O with different Zn contents were prepared by solution combustion method, while the effect of Zn ion concentration on the electrochemical performance of rock salt-type HEOs was also assessed. The results suggest that with the increasing Zn content, the electrochemical performance of the electrode material was enhanced. Although the (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O electrode exhibits a higher lattice distortion and oxygen vacancy concentration, resulting in a slightly higher intrinsic conductivity and lithium ion diffusion coefficient, however, the (Co0.18Cu0.18Mg0.18Ni0.18Zn0.28)O electrode showed the most excellent electrochemical performance with the highest initial discharge specific capacity (777.06 mAh·g-1) and cycling stability (capacity retention rate nearly 100% after 150 cycles) at 200 mA·g-1, as well as excellent rate performance (specific capacity of 140.2 mAh·g-1 at 3000 mA·g-1), and it even shows the best cycling stability after 150 cycles at a high current density of 1000 mAh·g-1 (specific capacity of 198.1 mAh·g-1). The excellent electrochemical performance of the (Co0.18Cu0.18Mg0.18-Ni0.18Zn0.28)O electrode may be attributed to the complete conversion of Zn element during the redox reaction. The higher Zn content is beneficial to increase capacities, while the appropriate oxygen vacancy concentration and lattice distortion may provide more channels for Li ion migration, thus resulting in higher cycle stability of the electrode.

Key wordsinorganic non-metallic materials    lithium-ion battery    different Zn contents    rocksalt type high-entropy oxide    lattice distortion    synergistic effect
收稿日期: 2023-11-22     
ZTFLH:  TM912  
基金资助:先进金属材料绿色制备与表面技术教育部重点实验室主任基金(GFST2022ZR08);安徽省高校自然科学研究重点项目(2023AH051104)
通讯作者: 冒爱琴,副教授,maoaiqinmaq@163.com,研究方向为高熵材料的制备及在能量储存中的应用研究
Corresponding author: MAO Aiqin, Tel: 13855599146, E-mail: maoaiqinmaq@163.com
作者简介: 陈诗洁,女,1999年生,硕士生
图1  样品的XRD谱和局部放大谱
图2  Zn0.28样品的SEM照片和EDS mapping图、三种样品的N2吸脱附等温曲线和BJH孔径分布
SamplesSBET / m2·g-1VBJH / cm3·g-1Daver / nmDmost / nm
Zn0.128.8420.0167.7333.106
Zn0.24.2990.0115.3052.813
Zn0.285.4740.0147.4953.082
表1  样品的BET比表面积(SBET)、BJH吸附孔体积(VBJH)、平均孔径(Daver)和最可几孔径(Dmost)
图3  样品的XPS、Co、Cu、Ni、O的高分辨XPS谱和电导率
SamplesCo2+Co3+Cu+Cu2+Co averageCu average
Zn0.1238.7%61.3%61.3%38.7%2.611.39
Zn0.236.1%63.9%54.5%45.5%2.641.46
Zn0.2847.1%52.9%56.8%43.2%2.531.43
表2  根据XPS分析结果计算出的Co和Cu元素的价态分布和平均化合价
图4  Zn0.12、Zn0.2和Zn0.28电极在0.1 mV·s-1扫速下的循环伏安曲线、充放电曲线、不同电流密度下的循环性能和倍率性能
图5  三电极在200 mA·g-1下循环前和循环150次后的SEM照片
图6  Zn0.28电极在不同扫速下的CV曲线、lg(ip)与lg(v)的关系曲线、1 mV·s-1时的赝电容(蓝色区域)和扩散控制(红色区域)贡献的占比、三电极在不同扫描速率下的赝电容贡献率汇总图、恒电流间歇滴定技术(GITT)测试过程中的充放电曲线以及充放电过程中锂离子的扩散系数
图7  Zn0.28电极首次(a, b)和第三次(c, d)循环过程中的原位阻抗;三电极的初始阻抗(e)及对应低频区的ω-1/2与Z′的关系图(i);电极在循环前、3和100次后的电化学阻抗谱和等效电路:Zn0.12 (f), Zn 0.2 (g),Zn0.28 (h)以及相对应低频区的ω-1/2与Z′的关系图(j~l)
SamplesRs / ΩRct / ΩDLi+ / 10-21 cm2·s-1
Pristine3rd100thPristine3rd100thPristine3rd100th
Zn0.124.45.26.1338.026.831.814.92.114.8
Zn0.28.36.08.6248.042.014.910.42.520.4
Zn0.285.64.36.4283.78.126.917.32.510.8
表3  所制备的电极循环前和循环3、100圈后的等效电路图参数和锂离子扩散系数的计算值
[1] Liu Y Y, Zhu Y Y, Cui Y. Challenges and opportunities towards fast-charging battery materials [J]. Nat. Energy, 2019, 4: 540
doi: 10.1038/s41560-019-0405-3
[2] Lim S, Kim J H, Yamada Y, et al. Improvement of rate capability by graphite foam anode for Li secondary batteries [J]. J. Power Sources, 2017, 355: 164
[3] Xiang H M, Xing Y, Dai F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward [J]. J. Adv. Ceram., 2021, 10: 385
[4] Xiang H Z, Quan F, Li W C, et al. Research progress in preparation and application of high-entropy oxides [J]. Chin. J. Process Eng., 2020, (3): 245
[4] 项厚政, 权 峰, 李文超 等. 高熵氧化物的制备及应用研究进展 [J]. 过程工程学报, 2020, (3): 245
doi: 10.12034/j.issn.1009-606X.219228
[5] Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nat. Commun., 2015, 6: 8485
doi: 10.1038/ncomms9485 pmid: 26415623
[6] Sarkar A, Djenadic R, Usharani N J, et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides [J]. J. Eur. Ceram. Soc., 2017, 37: 747
[7] Sarkar A, Velasco L, Wang D, et al. High entropy oxides for reversible energy storage [J]. Nat. Commun., 2018, 9: 3400
doi: 10.1038/s41467-018-05774-5 pmid: 30143625
[8] Qiu N, Chen H, Yang Z M, et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance [J]. J. Alloys Compd., 2019, 777: 767
[9] Wang S Y, Chen T Y, Kuo C H, et al. Operando synchrotron transmission X-ray microscopy study on (Mg, Co, Ni, Cu, Zn)O high-entropy oxide anodes for lithium-ion batteries [J]. Mater. Chem. Phys., 2021, 274: 125105
[10] Chen H, Qiu N, Wu B Z, et al. Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties [J]. RSC Adv., 2019, 9: 28908
[11] Guo H C, Shen J X, Wang T L, et al. Design and fabrication of high-entropy oxide anchored on graphene for boosting kinetic performance and energy storage [J]. Ceram. Int., 2022, 48: 3344
[12] Triolo C, Xu W, Petrovičovà B, et al. Evaluation of entropy‐stabilized (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O oxides produced via solvothermal method or electrospinning as anodes in lithium‐ion batteries [J]. Adv. Funct. Mater., 2022, 32: 2202892
[13] Wang K, Hua W B, Huang X H, et al. Synergy of cations in high entropy oxide lithium ion battery anode [J]. Nat. Commun., 2023, 14: 1487
doi: 10.1038/s41467-023-37034-6 pmid: 36932071
[14] Berardan D, Meena A K, Franger S, et al. Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides [J]. J. Alloys Compd., 2017, 704: 693
[15] Quan F, Xiang H Z, Yang L, et al. Research progress in preparation and application of high-entropy-alloy powders [J]. Chin. J. Process Eng., 2019, 19: 447
[15] 权 峰, 项厚政, 杨 磊 等. 高熵合金粉体制备及应用研究进展 [J]. 过程工程学报, 2019, 19: 447
[16] Thiel T C, Fowlie J, Autieri C, et al. Coupling lattice instabilities across the interface in ultrathin oxide heterostructures [J]. ACS Materials Lett., 2020, 2: 389
[17] Li Y F, Xu Y S, Yin Y R, et al. Entropy engineering design of high-performing lithiated oxide cathodes for proton-conducting solid oxide fuel cells [J]. J. Adv. Ceram. 2023, 12: 2017
[18] Mao A Q, Xiang H Z, Zhang Z G, et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder [J]. J. Magn. Magn. Mater., 2019, 484: 245
[19] Zhu K X, Gao H Y, Hu G X, et al. Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries [J]. J. Power Sources, 2017, 340: 263
[20] Zou F, Hu X, Li Z, et al. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries [J]. Adv. Mater., 2014, 26: 6622
[21] Noh H B, Lee K S, Chandra P, et al. Application of a Cu-Co alloy dendrite on glucose and hydrogen peroxide sensors [J]. Electrochimica Acta, 2012, 61: 36
[22] Wang D, Jiang S D, Duan C Q, et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance [J]. J. Alloys Compd., 2020, 844: 156158
[23] Usharani N J, Shringi R, Sanghavi H, et al. Role of size, alio-/multi-valency and non-stoichiometry in the synthesis of phase-pure high entropy oxide (Co, Cu, Mg, Na, Ni, Zn)O [J]. Dalton Trans., 2020, 49: 7123
[24] Guo M, Liu Y F, Zhang F N, et al. Inactive Al3+-doped La(CoCrFe-MnNiAl x )1/(5+ x)O3 high-entropy perovskite oxides as high performance supercapacitor electrodes [J]. J. Adv. Ceram., 2022, 11: 742
[25] Li S, Peng Z J, Fu X L. Zn0.5Co0.5Mn0.5Fe0.5Al0.5Mg0.5O4 high-entropy oxide with high capacity and ultra-long life for Li-ion battery anodes [J]. J. Adv. Ceram., 2023, 12: 59
[26] Phakatkar A H, Saray M T, Rasul M G, et al. Ultrafast synthesis of high entropy oxide nanoparticles by flame spray pyrolysis [J]. Langmuir, 2021, 37: 9059
[27] Xu Y S, Xu X, Bi L. A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells [J]. J. Adv. Ceram., 2022, 11: 794
[28] Li L, Meng T, Wang J, et al. Oxygen vacancies boosting lithium-ion diffusion kinetics of lithium germanate for high-performance lithium storage [J]. ACS Appl. Mater. Interfaces 2021, 13: 24804
[29] Xiao B, Wu G, Wang T D, et al. High-entropy oxides as advanced anode materials for long-life lithium-ion batteries [J]. Nano Energy, 2022, 95
[30] Tang Z K, Xue Y F, Teobaldi G, et al. The oxygen vacancy in Li-ion battery cathode materials [J]. Nanoscale Horizons, 2020, 5: 1453
[31] Qian K C, Yan Y, Xi S B, et al. Elucidating the strain-vacancy-activity relationship on structurally deformed Co@CoO nanosheets for aqueous phase reforming of formaldehyde [J]. Small, 2021, 17: 2102970
[32] Luo X F, Patra J, Chuang W T, et al. Charge-discharge mechanism of high-entropy Co-free spinel oxide toward Li+ storage examined using operando quick-scanning X-ray absorption spectroscopy [J]. Adv. Sci., 2022, 9: 2201219
[33] Liu X F, Xing Y Y, Xu K, et al. Kinetically accelerated lithium storage in high-entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies [J]. Small, 2022, 18: 2200524
[34] Qiu N, Chen H, Yang Z M, et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O with superior lithium storage performance [J]. J. Alloys Compd., 2019, 777: 767
[35] Jia Y G, Shao X, Cheng J, et al. Preparation and lithium storage performance of pseudocapacitance-controlled chalcogenide high-entropy oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 anode materials [J]. Chem. J. Chin. Univ., 2022, 43: 157
[35] 贾洋刚, 邵 霞, 程 婕 等. 赝电容控制型钙钛矿高熵氧化物La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3材料的制备及储锂性能 [J]. 高等学校化学学报, 2022, 43: 157
[36] Li Q, Li H S, Xia Q T, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry [J]. Nat. Mater., 2021, 20: 76
[37] Sun Z, Zhao Y J, Sun C, et al. High entropy spinel-structure oxide for electrochemical application [J]. Chem. Eng. J., 2022, 431: 133448
[38] Yan S, Luo S, Yang L, et al. Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries [J]. J. Adv. Ceram., 2021, 11: 158
[39] Tian K H, Duan C Q, Ma Q, et al. High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries [J]. Rare Metals, 2021, 41: 1265
[40] Shen L F, Lv H F, Chen S Q, et al. Peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors [J]. Adv. Mater., 2017, 29: 1700142
[41] Jia Y G, Chen S J, Shao X, et al. Preparation and High-performance Lithium-ion Storage of Cobalt-free Perovskite High-entropy Oxide Anode Materials [J]. Acta Chim. Sin., 2023, 81: 486
[41] 贾洋刚, 陈诗洁, 邵 霞 等. 高性能无钴化钙钛矿型高熵氧化物负极材料的制备及储锂性能研究 [J]. 化学学报 2023, 81: 486
doi: 10.6023/A23020046
[42] Wang P P, Jia Y G, Shao X, et al. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials [J]. CIESC Journal, 2022, 73: 5625
[42] 王朋朋, 贾洋刚, 邵 霞 等. K+掺杂尖晶石型(Co0.2Cr0.2Fe0.2Mn0.2-Ni0.2)3O4高熵氧化物负极材料制备与储锂性能研究 [J]. 化工学报, 2022, 73: 5625
doi: 10.11949/0438-1157.20221116
[43] Wang X L, Liu J, Hu Y F, et al. Oxygen vacancy-expedited ion diffusivity in transition-metal oxides for high-performance lithium-ion batteries [J]. Sci. China Mater., 2022, 65: 1421
[44] Jia Y G, Chen S J, Shao X, et al. Synergetic effect of lattice distortion and oxygen vacancies on high-rate lithium-ion storage in high-entropy perovskite oxide [J]. J. Adv. Ceram., 2023, 12: 1214
[45] Xiao B, Wu G, Wang T, et al. Enhanced Li-ion diffusion and cycling stability of Ni-free high-entropy spinel oxide anodes with high-concentration oxygen vacancies [J]. ACS Appl. Mater. Interfaces, 2023, 15: 2792
[1] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[2] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[3] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[4] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[5] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[6] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[7] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[8] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[9] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[10] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[11] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[12] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[13] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[14] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[15] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.