Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (4): 257-268    DOI: 10.11901/1005.3093.2023.256
  研究论文 本期目录 | 过刊浏览 |
铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能
吴厚燃1,2, 段体岗2(), 马力2, 邵刚勤1(), 张恒宇2, 张海兵2
1.武汉理工大学 材料复合新技术国家重点实验室 武汉 430070
2.洛阳船舶材料研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries
WU Houran1,2, DUAN Tigang2(), MA Li2, SHAO Gangqin1(), ZHANG Hengyu2, ZHANG Haibing2
1.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2.National State Key Laboratory for Marine Corrision and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

吴厚燃, 段体岗, 马力, 邵刚勤, 张恒宇, 张海兵. 铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能[J]. 材料研究学报, 2024, 38(4): 257-268.
Houran WU, Tigang DUAN, Li MA, Gangqin SHAO, Hengyu ZHANG, Haibing ZHANG. Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries[J]. Chinese Journal of Materials Research, 2024, 38(4): 257-268.

全文: PDF(15768 KB)   HTML
摘要: 

研究了铝空气电池的Al-Zn-In-Mg-Ga-Mn合金阳极在2 mol/L NaCl和4 mol/L KOH电解液中的自腐蚀行为和电化学性能。结果表明,在2 mol/L的NaCl和4 mol/L的KOH溶液中,Al-Zn-In-Mg-Ga-Mn合金阳极比纯Al阳极的腐蚀电位(Ecorr)分别负移了0.041和0.018 V,自腐蚀速率分别降低了0.2146和15.1 mg·cm-2·h-1,使金属阳极的电化学活性得以提高,自腐蚀行为受到了抑制。在2 mol/L的NaCl电解液中,合金阳极的放电容量峰值达到2608.96 Ah·kg-1,比纯Al阳极提高了55.59%;能量密度最高为1742.61 Wh·kg-1,比纯Al阳极提高了274.58%,阳极效率为87.55%。在4 mol/L的KOH电解液中,合金阳极的放电容量最高为1605.15 Ah·kg-1,比纯Al阳极提高了131.27%;能量密度最高为1404.83 Wh·kg-1,比纯Al阳极提高了231.52%,阳极效率为53.86%。

关键词 金属材料Al-Zn-In-Mg-Ga-Mn合金铝空气电池电化学性能腐蚀行为    
Abstract

The free corrosion behavior and electrochemical properties of Al-Zn-In-Mg-Ga-Mn alloys, as anodes working with 2 mol/L NaCl and 4 mol/L KOH electrolytes were studied. Results revealed that in the two electrolytes, the corrosion potential (Ecorr) of alloy anodes shifted negatively by 0.041 V and 0.018 V, and the free corrosion rates decreased by 0.2146 and 15.1 mg·cm-2·h-1, respectively in the contrast to those of pure Al anode. The electrochemical activity of pure Al anode was improved, while its free corrosion behavior was inhibited. In the 2 mol/L NaCl electrolyte, the discharge capacity peak of the alloy anode reached 2608.96 Ah·kg-1, which was 55.59% higher than that of the pure Al anode. The highest energy density attained 1742.61 Wh·kg-1, being 274.58% superior to that of the pure Al anode. The anode efficiency was 87.55%. In the 4 mol/L KOH electrolyte, the highest discharge capacity of the Al-Zn-In-Mg-Ga-Mn alloy anode was 1605.15 Ah·kg-1, which was 131.27% higher than that of the pure Al anode. The highest energy density was 1404.83 Wh·kg-1, which was 231.52% higher than that of the pure Al anode. The anode efficiency was 53.86%.

Key wordsmetallic materials    Al-Zn-In-Mg-Ga-Mn alloy    aluminum-air battery    electrochemical performance    corrosion behavior
收稿日期: 2023-05-08     
ZTFLH:  TQ152  
基金资助:国家重点研发计划(2022YFB3808800)
通讯作者: 段体岗,高级工程师,duantigang@sunrui.net,研究方向为海洋腐蚀与防护、化学能源;
邵刚勤,研究员,gqshao@whut.edu.cn,研究方向为新能源材料、无机新材料结构构建与解析
作者简介: 吴厚燃,男,1999年生,硕士生
图1  电池放电特性测试系统示意图
图2  纯Al和Al-Zn-In-Mg-Ga-Mn合金的XRD谱、晶粒尺寸分布和晶粒特征图
图3  纯Al及Al-Zn-In-Mg-Ga-Mn合金阳极的自腐蚀速率和平均腐蚀深度柱状图
SolutionsSamples∆W/ mgFree corrosion rate / mg·cm-2·h-1Average corrosion depth / mmMaximum corrosion depth / mm
2 mol/L NaClPure Al11.70.24380.1230.18
Al-Zn-In-Mg-Ga-Mn1.40.02920.0660.12
4 mol/L KOHPure Al84.042.00.3770.70
Al-Zn-In-Mg-Ga-Mn53.826.90.2390.37
表1  纯Al和Al-Zn-In-Mg-Ga-Mn合金阳极的自腐蚀参数
图4  纯Al及Al-Zn-In-Mg-Ga-Mn合金阳极的自腐蚀产物形貌及表面形貌
图5  纯Al及Al-Zn-In-Mg-Ga-Mn合金阳极的开路电位
图6  纯Al及Al-Zn-In-Mg-Ga-Mn合金阳极的动电位极化曲线
SolutionsSamplesEcorr / V vs. Ag/AgClIcorr / mA·cm-2-βc / mV·dec-1βa / mV·dec-1Rp / Ω·cm2
2 mol/L NaClPure Al-1.1385.158 × 10-395.082.23709.851
Al-Zn-In-Mg-Ga-Mn-1.1795.978 × 10-388.0116.23637.334
4 mol/L KOHPure Al-1.5683.4375 × 102293.4325.62.641
Al-Zn-In-Mg-Ga-Mn-1.5864.7838 × 102310.8455.00.168
表2  纯Al和Al-Zn-In-Mg-Ga-Mn合金阳极的腐蚀参数
图7  纯Al及Al-Zn-In-Mg-Ga-Mn合金阳极的Nyquist和Bode图
Parameters

Al-Zn-In-Mg-Ga-Mn

(in 2 mol/L NaCl)

Pure Al

(in 2 mol/L NaCl)

Al-Zn-In-Mg-Ga-Mn

(in 4 mol/L KOH)

Pure Al

(in 4 mol/L KOH)

L1 / H·cm2--1.153 × 10-61.134 × 10-6
Rs / Ω·cm22.2052.5670.77061.212
CPE1 / F·cm-21.484 × 10-48.184 × 10-50.301713.33
n1 (0 < n1 < 1)0.82590.87930.58570.6489
Rt / Ω·cm2521.1830.70.020.01285
CPE2 / F·cm-20.052179.455 × 10-70.21641.4 × 10-17
n2 (0 < n2 < 1)1110.4314
R2 / Ω·cm2167.4329.90.36050.5716
L2 / H·cm236.97427.21.1160.9376
Rl / Ω·cm2503.4872.10.230.2867
表3  拟合的EIS参数
图8  纯Al及Al-Zn-In-Mg-Ga-Mn合金阳极的电压-时间曲线
图9  纯Al及Al-Zn-In-Mg-Ga-Mn合金阳极放电特性和阳极效率
SamplesEcorr / VQ / Ah·kg-1η / %Refs.
Al-3Zn-0.02In-1.237 (in 4 mol/L NaOH)--[1]
Al-5Zn-0.03In-0.857 (in 3.5% NaCl, mass fraction)2340 (at 1 mA·cm-2)78.52[48]
Al-4.5Zn-0.05In-1.411 (in 4 mol/L NaOH)1595.20 (at 10 mA·cm-2)53.53[32]
Al-5Zn-0.03In-1Er-0.738 (in 3.5%NaCl, mass fraction)2414 (at 1 mA·cm-2)81[48]
Al-4.5Zn-0.05In-0.05Ga-1.457 (in 4 mol/L NaOH)< 1600 (at 10 mA·cm-2)< 53.69[14]
Al-4.5Zn-0.05In-0.05Sn-1.496 (in 4 mol/L NaOH)< 1600 (at 10 mA·cm-2)< 53.69[14]
Al-4.5Zn-0.05In-0.05Bi-1.474 (in 4 mol/L NaOH)< 1600 (at 10 mA·cm-2)< 53.69[14]
Al-4.5Zn-0.05In-0.05Sn-1.496 (in 4 mol/L NaOH)1548.11 (at 10 mA·cm-2)51.95[32]
Al-5.5Zn-0.02In-0.1Si-0.459 (in sea water)2569 (at 0.4~4.0 mA·cm-2)86.21[31]
Al-6Zn-0.02In-1.6Mg-0.06Ti-0.484 (in sea water)2486 (at 0.4~4.0 mA·cm-2)83.42[31]
Al-1Zn-0.1In-0.1Sn-0.5Mg-0.1Mn-1.535 (in 4 mol/L NaOH)1481 (at 20 mA·cm-2)49.75[33]
This work (Al-Zn-In-Mg-Ga-Mn)-0.98 (in 2 mol/L NaCl)2608.96 (at 10 mA·cm-2, in 2 mol/L NaCl)87.55*
-1.387 (in 4 mol/L KOH)1605.15 (at 10 mA·cm-2, in 4 mol/L KOH)53.86
表4  近年来关于Al-Zn-In及Al-Zn-In基合金阳极的相关铝空气电池性能的研究
图10  纯Al和Al-Zn-In-Mg-Ga-Mn合金阳极放电3 h后的腐蚀形貌和成分分布图
图11  纯Al和Al-Zn-In-Mg-Ga-Mn合金阳极放电3 h后的表面形貌
图12  铝空气电池放电示意图
1 Linjee S, Moonngam S, Klomjit P, et al. Corrosion behaviour improvement from the ultrafine-grained Al-Zn-In​ alloys in Al-air battery [J]. Energy Rep., 2022, 8: 5117
2 Zhang Z K, Wang Y B, Wei X F, et al. High energy efficiency and high discharge voltage of 2N-purity Al-based anodes for Al-air battery by simultaneous addition of Mn, Zn and Ga [J]. J. Power Sources, 2023, 563: 232845
3 Salado M, Lizundia E. Advances, challenges, and environmental impacts in metal-air battery electrolytes [J]. Mater. Today Energy, 2022, 28: 101064
4 Baek M J, Choi J, Wi T U, et al. Strong interfacial energetics between catalysts and current collectors in aqueous sodium-air batteries [J]. J. Mater. Chem., 2022, 10A(9) : 4601
5 Buckingham R, Asset T, Atanassov P. Aluminum-air batteries: a review of alloys, electrolytes and design [J]. J. Power Sources, 2021, 498: 229762
6 Feng Z Z, Mei D, Zhu S J, et al. Research progress of anode materials for primary magnesium-air batteries [J]. Dev. Appl. Mater., 2022, 37(6): 12
6 冯壮壮, 梅 迪, 朱世杰 等. 一次镁空气电池阳极材料研究进展 [J]. 材料开发与应用, 2022, 37(6): 12
7 Tzeng Y C, Chen R Y. The effect of the Zn content on the electrochemical performance of Al-Zn-Sn-Ga alloys [J]. Mater. Chem. Phys., 2023, 299: 127510
8 Zhao Q, Zheng J X, Deng Y, et al. Regulating the growth of aluminum electrodeposits: towards anode-free Al batteries [J]. J. Mater. Chem., 2020, 8A(44) : 23231
9 Wang Y Y, Liu H L, Jia Z M, et al. The electrochemical performance of Al-Mg-Ga-Sn-xBi alloy used as the anodic material for Al-air battery in KOH electrolytes [J]. Crystals, 2022, 12(12): 1785
10 Abbas M, Sadawy M M, Hosny A M. Microstructure and electrochemical properties of Al-5Zn-0.2Sn-0.2Bi-xSb as a novel electrode for batteries applications [J]. J. Alloys Compd., 2022, 923: 166303
11 Liang R, Su Y, Sui X L, et al. Effect of Mg content on discharge behavior of Al-0.05Ga-0.05Sn-0.05Pb-xMg alloy anode for aluminum-air battery [J]. J. Solid State Electrochem., 2019, 23(1): 53
12 Zhou S G, Tian C, Alzoabi S, et al. Performance of an Al-0.08Sn-0.08Ga-xMg alloy as an anode for Al-air batteries in alkaline electrolytes [J]. J. Mater. Sci., 2020, 55: 11477
13 Ren J M, Ma J B, Zhang J, et al. Electrochemical performance of pure Al, Al-Sn, Al-Mg and Al-Mg-Sn anodes for Al-air batteries [J]. J. Alloys Compd., 2019, 808: 151708
14 Zhang H T, Zheng Y Q, Yin G, et al. The influence of Ga, Sn, or Bi addition on the electrochemical behavior and discharge performance of Al-Zn-In anodes for Al-air batteries [J]. J. Mater. Sci., 2021, 56(18): 11011
15 Wang Q, Miao H, Xue Y J, et al. Performances of an Al-0.15Bi-0.15Pb-0.035 Ga alloy as an anode for Al-air batteries in neutral and alkaline electrolytes [J]. RSC Adv., 2017, 7(42): 25838
16 Senel E, Nisancioglu K. Role of dealloying on the electrochemical behaviour of aluminium alloyed with trace amounts of gallium [J]. Corros. Sci., 2014, 85: 436
17 Wu Z B, Zhang H T, Guo C, et al. Effects of indium, gallium, or bismuth additions on the discharge behavior of Al-Mg-Sn-based alloy for Al-air battery anodes in NaOH electrolytes [J]. J. Solid State Electrochem., 2019, 23(8): 2483
18 Zhuang Z H, Feng Y, Peng C Q, et al. Effect of Ga on microstructure and electrochemical performance of Al-0.4Mg-0.05Sn-0.03Hg alloy as anode for Al-air batteries [J]. Trans. Nonferrous Met. Soc. China, 2021, 31(9): 2558
19 Sun Z G, Lu H M. Performance of Al-0.5In as anode for Al-Air battery in inhibited alkaline solutions [J]. J. Electrochem. Soc., 2015, 162(8): A1617
20 Park I J, Choi S R, Kim J G. Aluminum anode for aluminum-air battery-Part II: influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution [J]. J. Power Sources, 2017, 357: 47
21 Zhang C, Wang R C, Feng Y, et al. Effects of alloying elements on electrochemical performance of aluminum anodes [J]. J. Central South Univ. (Sci. Technol.), 2012, 43(1): 81
21 张 纯, 王日初, 冯 艳 等. 合金元素对铝阳极电化学性能的影响 [J]. 中南大学学报(自然科学版), 2012, 43(1): 81
22 Herraiz-Cardona I, Ortega E, Pérez-Herranz V. Impedance study of hydrogen evolution on Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits [J]. Electrochim. Acta, 2011, 56(3): 1308
23 He J G, Wen J B, Li X D, et al. Influence of Ga and Bi on electrochemical performance of Al-Zn-Sn sacrificial anodes [J]. Trans. Nonferrous Met. Soc. China, 2011, 21(7): 1580
24 Graver B, van Helvoort A T J, Nisancioglu K. Effect of heat treatment on anodic activation of aluminium by trace element indium [J]. Corros. Sci., 2010, 52(11): 3774
25 Wu Z B, Zhang H T, Nagaumi H, et al. Effect of microstructure evolution on the discharge characteristics of Al-Mg-Sn-based anodes for Al-air batteries [J]. J. Power Sources, 2022, 521: 230928
26 Wu Z B, Zhang H T, Zou J, et al. Effect of microstructure on discharge performance of Al-0.8 Sn-0.05Ga-0.9Mg-1.0Zn (wt.%) alloy as anode for seawater-activated battery [J]. Mater. Corros., 2020, 71(10): 1680
27 Zhang C, Cai Z Y, Wang R C, et al. Enhancing the electrochemical performance of Al-Mg-Sn-Ga alloy anode for Al-air battery by solution treatment [J]. J. Electrochem. Soc., 2021, 168(3): 030519
28 Li Y W, Wang Y C, Zhang S M, et al. Corrosion inhibition of aromatic acids on Al-7075 anode for Al-air batteries with alkaline electrolyte [J]. J. Power Sources, 2022, 523: 231042
29 Gelman D, Lasman I, Elfimchev S, et al. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications [J]. J. Power Sources, 2015, 285: 100
30 Wu S A, Zhang Q, Sun D, et al. Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery [J]. Chem. Eng. J., 2020, 383: 123162
31 Wang H H, Du M, Liang H, et al. Study on Al-Zn-in alloy as sacrificial anodes in seawater environment [J]. J. Ocean Univ. China, 2019, 18: 889
32 Wu Z B, Zhang H T, Yang D H, et al. Electrochemical behaviour and discharge characteristics of an Al-Zn-In-Sn anode for Al-air batteries in an alkaline electrolyte [J]. J. Alloys Compd., 2020, 837: 155599
33 Zhang W F, Hu T R, Chen T, et al. Electrochemical performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) alloys used as the anode of an Al-air battery [J]. Processes, 2022, 10(2): 420
34 Wu P F, Wu S A, Sun D, et al. A review of al alloy anodes for Al-Air batteries in neutral and alkaline aqueous electrolytes [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34(3): 309
35 Kaewmaneekul T, Lothongkum G. Effect of aluminium on the passivation of zinc-aluminium alloys in artificial seawater at 80oC [J]. Corros. Sci., 2013, 66: 67
36 Ma J L, Wen J B, Zhu H X, et al. Electrochemical performances of Al-0.5Mg-0.1Sn-0.02In alloy in different solutions for Al-air battery [J]. J. Power Sources, 2015, 293: 592
37 Zhu C, Yang H X, Wu A Q, et al. Modified alkaline electrolyte with 8-hydroxyquinoline and ZnO complex additives to improve Al-air battery [J]. J. Power Sources, 2019, 432: 55
38 Egan D R, de León C P, Wood R J K, et al. Developments in electrode materials and electrolytes for aluminium-air batteries [J]. J. Power Sources, 2013, 236: 293
39 Wu Z B, Zhang H T, Zou J, et al. Enhancement of the discharge performance of Al-0.5Mg-0.1Sn-0.05Ga (wt.%) anode for Al-air battery by directional solidification technique and subsequent rolling process [J]. J. Alloys Compd., 2020, 827: 154272
40 Ma J L, Wen J B, Ren F Z, et al. Electrochemical performance of Al-Mg-Sn based alloys as anode for Al-air battery [J]. J. Electrochem. Soc., 2016, 163(8): A1759
41 Ma J L, Wen J B, Gao J W, et al. Performance of Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn as anode for Al-air battery in NaCl solutions [J]. J. Power Sources, 2014, 253: 419
42 Liu X, Zhang P J, Xue J L, et al. High energy efficiency of Al-based anodes for Al-air battery by simultaneous addition of Mn and Sb [J]. Chem. Eng. J., 2021, 417: 128006
43 Feng Y, Li X G, Wang R C, et al. Influence of cerium on microstructures and electrochemical properties of Al-Mg-Sn-Hg anode materials for seawater battery [J]. J. Rare Earths, 2015, 33(9): 1010
44 Liu X, Xue J L, Zhang P J, et al. Effects of the combinative Ca, Sm and La additions on the electrochemical behaviors and discharge performance of the as-extruded AZ91 anodes for Mg-air batteries [J]. J. Power Sources, 2019, 414: 174
45 Zhang P J, Liu X, Xue J L, et al. The role of microstructural evolution in improving energy conversion of Al-based anodes for metal-air batteries [J]. J. Power Sources, 2020, 451: 227806
46 Newman R C. Local chemistry considerations in the tunnelling corrosion of aluminium [J]. Corros. Sci., 1995, 37(3): 527
47 Li L, Liu H, Yan Y, et al. Effects of alloying elements on the electrochemical behaviors of Al-Mg-Ga-In based anode alloys [J]. Int. J. Hyd. Energy, 2019, 44(23): 12073
48 Yu M Z, Cui J, Tang Z C, et al. Effect of Er-rich precipitates on microstructure and electrochemical behavior of the Al-5Zn-0.03In alloy [J]. Metals, 2022, 12(1): 131
[1] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[2] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[3] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
[4] 田淞文, 刘丽荣, 田素贵. 一种含Re/Ru镍基单晶合金的蠕变行为及其机理[J]. 材料研究学报, 2024, 38(4): 248-256.
[5] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[6] 齐恺力, 胡德江, 高崇, 刘峰, 庞建超, 邵琛玮, 杨梦起, 李守新, 张哲峰. 不同温度回火低合金钢缺口拉伸性能的预测[J]. 材料研究学报, 2024, 38(3): 197-207.
[7] 刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
[8] 尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.
[9] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[10] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[11] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[12] 曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.
[13] 刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.
[14] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[15] 杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.