|
|
基于多巴胺改性纳米复合水凝胶的制备和性能 |
王仲楠( ), 郭慧, 母悦山 |
北京交通大学机械与电子控制工程学院 北京 100044 |
|
Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification |
WANG Zhongnan( ), GUO Hui, MU Yueshan |
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China |
引用本文:
王仲楠, 郭慧, 母悦山. 基于多巴胺改性纳米复合水凝胶的制备和性能[J]. 材料研究学报, 2024, 38(4): 269-278.
Zhongnan WANG,
Hui GUO,
Yueshan MU.
Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. Chinese Journal of Materials Research, 2024, 38(4): 269-278.
1 |
Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month [J]. Biomater., 2022, 288: 121741
|
2 |
Greca L G, Lehtonen J, Tardy B L, et al. Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route [J]. Mater. Horiz, 2018, 5(3): 408
|
3 |
Han Y, Yang J, Zhao W, et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis [J]. Bioact. Mater., 2021, 6(10): 3596
doi: 10.1016/j.bioactmat.2021.03.022
pmid: 33869900
|
4 |
Mostakhdemin M, Nand A, Arjmandi M, et al. Mechanical and microscopical characterisation of bilayer hydrogels strengthened by TiO2 nanoparticles as a cartilage replacement candidate [J]. Mater. Today Commun., 2020, 25: 101279
|
5 |
Diao W, Wu L, Ma X, et al. Reversibly highly stretchable and self‐healable zwitterion‐containing polyelectrolyte hydrogel with high ionic conductivity for high‐performance flexible and cold‐resistant supercapacitor [J]. J. Appl. Polym. Sci., 2020, 137(34): 48995
|
6 |
Jin X, Jiang H, Qiao F, et al. Fabrication of ALGINATE‐P (SBMA‐CO-AAM) hydrogels with ultrastretchability, strain sensitivity, self-adhesiveness, biocompatibility, and self-cleaning function for stra-in sensors [J]. J. Appl. Polym. Sci., 2021, 138(3): 49697
|
7 |
Wang Z, Li J, Jiang L, et al. Zwitterionic hydrogel incorporated graphene oxide nanosheets with improved strength and lubri-city [J]. Langmuir, 2019, 35(35): 11452
|
8 |
Cui L, Tong W, Zhou H, et al. PVA-BA/PEG hydrogel with bilayer structure for biomimetic articular cartilage and investigation of its biotribological and mechanical properties [J]. J. Mater. Sci., 2021, 56(5): 3935
|
9 |
Jiang Y Y, Zhu Y J, Li H, et al. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate [J]. J. Colloid Interface Sci., 2017, 497: 266
|
10 |
Chen T Y, Ou S F, Chien H W. Biomimetic mineralization of tannic acid-supplemented HEMA/SBMA nanocomposite hydrogels [J]. Polymers, 2021, 13(11): 1697
|
11 |
Jin X, Jiang H, Qiao F, et al. Fabrication of alginate‐P (SBMA‐co‐AAm) hydrogels with ultrastretchability, strain sensitivity, self‐adhesiveness, biocompatibility, and self‐cleaning function for strain sensors [J]. J. Appl. Polym. Sci., 2021, 138(3): 49697
|
12 |
Meng D, Zhou X, Zheng K, et al. In-situ synthesis and characterization of poly(vinyl alcohol)/hydroxyapatite composite hydrogel by freezing-thawing method [J]. Chem. Res. Chin. Univ., 2019, 35(3): 521
|
13 |
Kim S H, Lee B, Heo J H, et al. The Effect of ζ‐potential and hydrodynamic size on nanoparticle interactions in hydrogels [J]. Part. Part. Syst. Charact., 2019, 36(1): 1800292
|
14 |
Wang Y, Cao X, Ma M, et al. A GelMA-PEGDA-nHA composite hydrogel for bone tissue engineering [J]. Materials, 2020, 13(17): 3735
|
15 |
Abouzeid R E, Khiari R, Salama A, et al. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing [J]. Int. J. Biol. Macromol, 2020, 160: 538
doi: S0141-8130(20)33342-0
pmid: 32470581
|
16 |
Pan Y, Xiong D. Study on compressive mechanical properties of nanohydroxyapatite reinforced poly (vinyl alcohol) gel composites as biomaterial [J]. J. Mater. Sci. Mater. Med., 2009, 20(6): 1291
|
17 |
Li G, Liu X N, Zhang D H, et al. Effect of surface modification of nano-hydroxyapatite on the dispersion of hydrophilic modifier [J]. Poly. Mater. Sci. Eng., 2018, 34(10): 66
|
17 |
李 刚, 刘晓南, 张道海 等. 亲水改性剂表面修饰纳米羟基磷灰石对其分散性的影响 [J]. 高分子材料科学与工程, 2018, 34(10): 66
|
18 |
Wang B, Yuan S, Xin W, et al. Synergic adhesive chemistry-based fabrication of BMP-2 immobilized silk fibroin hydrogel functionalized with hybrid nanomaterial to augment osteogenic differentiation of rBMSCs for bone defect repair [J]. Int. J. Biol. Macromol., 2021, 192: 407
doi: 10.1016/j.ijbiomac.2021.09.036
pmid: 34597700
|
19 |
Pang H, Ma C, Li S, et al. Tough thermosensitive hydrogel with excellent adhesion to low-energy surface developed via nanoparticle-induced dynamic crosslinking [J]. Appl. Surf. Sci., 2021, 560: 149935
|
20 |
Meng D, Zhou X, Zheng K, et al. In-situ synthesis and characterization of poly(vinyl alcohol)/hydroxyapatite composite hydrogel by freezing-thawing method [J]. Chem. Res. Chin. Univ., 2019, 35(3): 521
|
21 |
Chen Y, Zhang Y, Mensaha A, et al. A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers [J]. Carbohydr. Polym., 2021, 255: 117508
|
22 |
Sun X, Li Z, Cui Z, et al. Preparation and physicochemical properties of an injectable alginate-based hydrogel by the regulated release of divalent ions via the hydrolysis of D-glucono-δ-lactone [J]. J. Biomater. Appl., 2020, 34(7): 891
|
23 |
Wang Z, Li J, Liu Y, et al. Macroscale superlubricity achieved between zwitterionic copolymer hydrogel and sapphire in water [J]. Mater. & Design, 2020, 188: 108441
|
24 |
Wang Z, Meng F, Zhang Y, et al. Low-friction hybrid hydrogel with excellent mechanical properties for simulating articular cartilage movement [J]. Langmuir, 2023, 39(6): 2368
doi: 10.1021/acs.langmuir.2c03109
pmid: 36725688
|
25 |
Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance [J]. Adv. Funct. Mater., 2018, 28(3): 1704195
|
26 |
Bui H L, Nguyen C T V, Lee W-Y, et al. Dopamine-initiated photopolymerization for a versatile catechol-functionalized hydrogel [J]. ACS Appl. Bio Mater., 2021, 4(8): 6268
doi: 10.1021/acsabm.1c00564
pmid: 35006911
|
27 |
Zhong W, Xiong Y, Wang X, et al. Synthesis and characterization of multifunctional organic-inorganic composite hydrogel formed with tissue-adhesive property and inhibiting infection [J]. Mater. Sci. Eng. C, 2021, 118: 111532
|
28 |
Feng J, Dou J, Zhang Y, et al. Thermosensitive hydrogel for encapsulation and controlled release of biocontrol agents to prevent peanut aflatoxin contamination [J]. Polymers, 2020, 12(3): 547
|
29 |
Wang K, Ma Q, Zhang Y M, et al. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage [J]. Cellulose, 2020, 27(4): 1845
|
30 |
Olvera‐Sosa M, Guerra‐Contreras A, Gómez‐Durán C F A, et al. Tuning the pH‐responsiveness capability of poly(acrylic acid‐co‐itaconic acid)/NaOH hydrogel: Design, swelling, and rust removal evaluation [J]. J. Appl. Polym. Sci., 2020, 137(8): 48403
|
31 |
Grazioli G, Silva A F, Souza J F, et al. Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontium‐doped hydroxyapatite as promising biomaterials [J]. J. Biomed. Mater. Res., 2021, 109(7): 1160
|
32 |
Huang L, Mu X, Huang W, et al. Versatile surface modification of millimeter‐scale “aqueous pearls” with nanoparticles via self‐polymerization of dopamine [J]. Polym. Adv. Technol., 2021, 32(8): 3059
|
33 |
Travaglini L, Di Gregorio M C, Severoni E, et al. Deoxycholic acid and l-Phenylalanine enrich their hydrogel properties when combined in a zwitterionic derivative [J]. J. Colloid Interface Sci., 2019, 554: 453
|
34 |
Hirayama S, Kurokawa T, Gong J P. Non-linear rheological study of hydrogel sliding friction in water and concentrated hyaluronan solution [J]. Tribol. Int., 2020, 147: 106270
|
35 |
Zhao J, Diaz-Dussan D, Wu M, et al. Dual-cross-linked network hydrogels with multiresponsive, self-healing, and shear strengthening properties [J]. Biomacromolecules, 2021, 22(2): 800
doi: 10.1021/acs.biomac.0c01548
pmid: 33320540
|
36 |
Srivastava S, Levi A E, Goldfeld D J, et al. structure, morphology, and rheology of polyelectrolyte complex hydrogels formed by self-assembly of oppositely charged triblock polyelectrolytes [J]. Macromolecules, 2020, 53(14): 5763
|
37 |
Li Z, Liu Z, Ng T Y, et al. The effect of water content on the elastic modulus and fracture energy of hydrogel [J]. Extreme Mech. Lett., 2020, 35: 100617
|
38 |
Chen S, Huang J, Zhou Z, et al. Highly elastic anti-fatigue and anti-freezing conductive double network hydrogel for human body sensors [J]. Ind. Eng. Chem. Res., 2021, 60(17): 6162
|
39 |
Li Y, Chen J, Cai P, et al. An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation [J]. J. Mater. Chem. A, 2018, 6(12): 4948
|
40 |
Shao Z, Cheng W, Hu X, et al. An anti-pressure, fatigue-resistant and rapid self-healing hydrogel based on a nano-micelle assem-bly [J]. Polym. Chem., 2020, 11(13): 2300
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|