Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (4): 269-278    DOI: 10.11901/1005.3093.2023.342
  研究论文 本期目录 | 过刊浏览 |
基于多巴胺改性纳米复合水凝胶的制备和性能
王仲楠(), 郭慧, 母悦山
北京交通大学机械与电子控制工程学院 北京 100044
Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification
WANG Zhongnan(), GUO Hui, MU Yueshan
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
引用本文:

王仲楠, 郭慧, 母悦山. 基于多巴胺改性纳米复合水凝胶的制备和性能[J]. 材料研究学报, 2024, 38(4): 269-278.
Zhongnan WANG, Hui GUO, Yueshan MU. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. Chinese Journal of Materials Research, 2024, 38(4): 269-278.

全文: PDF(9025 KB)   HTML
摘要: 

分别在酸性和碱性条件下用多巴胺修饰纳米羟基磷灰石制备纳米粒子改性的复合水凝胶并研究其性能,结果表明:多巴胺能在纳米羟基磷灰石表面生成氧化膜,且改性纳米粒子中的苯环与两性离子水凝胶高分子链形成共价键结合。同时,在酸性条件下多巴胺能提高纳米羟基磷灰石的分散性进而提高两性离子水凝胶的热稳定性(323℃才发生分解),也能提高水凝胶的网络结构强度(储能模量为2.7 MPa)和内耗能力(损耗因子为0.041)。而且,酸性纳米复合水凝胶的抗压能力达到11.66 MPa,比纯PSBMA两性离子水凝胶提高了32倍。这表明,酸性纳米复合水凝胶的结构特点和力学性能与天然软骨相似。

关键词 高分子材料纳米复合水凝胶力学性能多巴胺改性纳米羟基磷灰石    
Abstract

Zwitterionic hydrogel is one of the most promising cartilage repair and replacement materials with good biocompatibility and anti-bacteria adhesion properties. However, there is a certain gap involving in mechanical properties compared to natural cartilage, which greatly limits its practical application. Herein, the nano-hydroxyapatite was modified with dopamine by acid, and alkali conditions respectively to obtain a nanoparticle-modified composite hydrogel. It is found that an oxide film could form on the surface of nano hydroxyapatite modified by dopamine, and the benzene ring in the modified nano particles is combined to form a covalent bond with the zwitterionic hydrogel polymer chain. Meanwhile, dopamine improves the dispersity of nano-hydroxyapatite by acidic condition, thereby enhancing the thermal stability of zwitterionic hydrogel (decomposing until 323oC), as well as its network structure strength (energy storage modulus of 2.7 MPa) and internal friction capacity (loss factor of 0.041). Moreover, the compressive strength of acid nanocomposite hydrogel arrives at 11.66 MPa, which is 32 times higher than that of pure PSBMA zwitterionic hydrogel. Thus, the structural characteristics and mechanical properties of acid nanocomposite hydrogels are similar to those of natural cartilage, which provides a significant reference for the design and preparation of bionic materials.

Key wordspolymer material    nanocomposite hydrogel    mechanical properties    dopamine modification    nano hydroxyapatite
收稿日期: 2023-07-12     
ZTFLH:  TQ174  
基金资助:北京交通大学人才基金(2022XKRC009);国家自然科学基金(51905296)
通讯作者: 王仲楠,副教授,E-mail:zhn.wang@bjtu.edu.cn,研究方向为机械设计理论与微纳米技术
Corresponding author: WANG Zhongnan, Tel: 18845616596, E-mail: zhn.wang@bjtu.edu.cn
作者简介: 王仲楠,男,1984年生,博士
图1  D@H改性后的红外光谱、拉曼光谱、XRD谱以及改性纳米粒子干燥后的粉末图示
图2  水凝胶的表面颜色和在空气中静置后表面颜色的变化、水凝胶溶胀后静置在空气中颜色的变化、水凝胶的微观结构以及水凝胶的红外光谱
图3  水凝胶组分结构和纳米复合水凝胶合成机理的图示
图4  水凝胶的基本理化性质
图5  添加剂含量不同的水凝胶的储能模量G′和耗散模量G″随角速度ω的变化、DA与HA质量比不同的纳米复合水凝胶储能模量G′和耗散模量G″随角速度ω的变化、添加剂含量不同的水凝胶的应力松弛实验结果、DA与HA质量比不同的纳米复合水凝胶的应力松弛实验结果、添加剂含量不同的水凝胶的损耗因子tan δ和归一化松弛模量G、DA与HA质量比不同的水凝胶的损耗因子tan δ和归一化松弛模量G以及TD@H-GE纳米复合水凝胶的粘附性
图6  添加剂不同的水凝胶的压缩断裂实验结果和DA与HA质量比不同的纳米复合水凝胶的压缩断裂实验结果
图7  几种水凝胶的压缩循环实验结果
1 Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month [J]. Biomater., 2022, 288: 121741
2 Greca L G, Lehtonen J, Tardy B L, et al. Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route [J]. Mater. Horiz, 2018, 5(3): 408
3 Han Y, Yang J, Zhao W, et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis [J]. Bioact. Mater., 2021, 6(10): 3596
doi: 10.1016/j.bioactmat.2021.03.022 pmid: 33869900
4 Mostakhdemin M, Nand A, Arjmandi M, et al. Mechanical and microscopical characterisation of bilayer hydrogels strengthened by TiO2 nanoparticles as a cartilage replacement candidate [J]. Mater. Today Commun., 2020, 25: 101279
5 Diao W, Wu L, Ma X, et al. Reversibly highly stretchable and self‐healable zwitterion‐containing polyelectrolyte hydrogel with high ionic conductivity for high‐performance flexible and cold‐resistant supercapacitor [J]. J. Appl. Polym. Sci., 2020, 137(34): 48995
6 Jin X, Jiang H, Qiao F, et al. Fabrication of ALGINATE‐P (SBMA‐CO-AAM) hydrogels with ultrastretchability, strain sensitivity, self-adhesiveness, biocompatibility, and self-cleaning function for stra-in sensors [J]. J. Appl. Polym. Sci., 2021, 138(3): 49697
7 Wang Z, Li J, Jiang L, et al. Zwitterionic hydrogel incorporated graphene oxide nanosheets with improved strength and lubri-city [J]. Langmuir, 2019, 35(35): 11452
8 Cui L, Tong W, Zhou H, et al. PVA-BA/PEG hydrogel with bilayer structure for biomimetic articular cartilage and investigation of its biotribological and mechanical properties [J]. J. Mater. Sci., 2021, 56(5): 3935
9 Jiang Y Y, Zhu Y J, Li H, et al. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate [J]. J. Colloid Interface Sci., 2017, 497: 266
10 Chen T Y, Ou S F, Chien H W. Biomimetic mineralization of tannic acid-supplemented HEMA/SBMA nanocomposite hydrogels [J]. Polymers, 2021, 13(11): 1697
11 Jin X, Jiang H, Qiao F, et al. Fabrication of alginate‐P (SBMA‐co‐AAm) hydrogels with ultrastretchability, strain sensitivity, self‐adhesiveness, biocompatibility, and self‐cleaning function for strain sensors [J]. J. Appl. Polym. Sci., 2021, 138(3): 49697
12 Meng D, Zhou X, Zheng K, et al. In-situ synthesis and characterization of poly(vinyl alcohol)/hydroxyapatite composite hydrogel by freezing-thawing method [J]. Chem. Res. Chin. Univ., 2019, 35(3): 521
13 Kim S H, Lee B, Heo J H, et al. The Effect of ζ‐potential and hydrodynamic size on nanoparticle interactions in hydrogels [J]. Part. Part. Syst. Charact., 2019, 36(1): 1800292
14 Wang Y, Cao X, Ma M, et al. A GelMA-PEGDA-nHA composite hydrogel for bone tissue engineering [J]. Materials, 2020, 13(17): 3735
15 Abouzeid R E, Khiari R, Salama A, et al. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing [J]. Int. J. Biol. Macromol, 2020, 160: 538
doi: S0141-8130(20)33342-0 pmid: 32470581
16 Pan Y, Xiong D. Study on compressive mechanical properties of nanohydroxyapatite reinforced poly (vinyl alcohol) gel composites as biomaterial [J]. J. Mater. Sci. Mater. Med., 2009, 20(6): 1291
17 Li G, Liu X N, Zhang D H, et al. Effect of surface modification of nano-hydroxyapatite on the dispersion of hydrophilic modifier [J]. Poly. Mater. Sci. Eng., 2018, 34(10): 66
17 李 刚, 刘晓南, 张道海 等. 亲水改性剂表面修饰纳米羟基磷灰石对其分散性的影响 [J]. 高分子材料科学与工程, 2018, 34(10): 66
18 Wang B, Yuan S, Xin W, et al. Synergic adhesive chemistry-based fabrication of BMP-2 immobilized silk fibroin hydrogel functionalized with hybrid nanomaterial to augment osteogenic differentiation of rBMSCs for bone defect repair [J]. Int. J. Biol. Macromol., 2021, 192: 407
doi: 10.1016/j.ijbiomac.2021.09.036 pmid: 34597700
19 Pang H, Ma C, Li S, et al. Tough thermosensitive hydrogel with excellent adhesion to low-energy surface developed via nanoparticle-induced dynamic crosslinking [J]. Appl. Surf. Sci., 2021, 560: 149935
20 Meng D, Zhou X, Zheng K, et al. In-situ synthesis and characterization of poly(vinyl alcohol)/hydroxyapatite composite hydrogel by freezing-thawing method [J]. Chem. Res. Chin. Univ., 2019, 35(3): 521
21 Chen Y, Zhang Y, Mensaha A, et al. A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers [J]. Carbohydr. Polym., 2021, 255: 117508
22 Sun X, Li Z, Cui Z, et al. Preparation and physicochemical properties of an injectable alginate-based hydrogel by the regulated release of divalent ions via the hydrolysis of D-glucono-δ-lactone [J]. J. Biomater. Appl., 2020, 34(7): 891
23 Wang Z, Li J, Liu Y, et al. Macroscale superlubricity achieved between zwitterionic copolymer hydrogel and sapphire in water [J]. Mater. & Design, 2020, 188: 108441
24 Wang Z, Meng F, Zhang Y, et al. Low-friction hybrid hydrogel with excellent mechanical properties for simulating articular cartilage movement [J]. Langmuir, 2023, 39(6): 2368
doi: 10.1021/acs.langmuir.2c03109 pmid: 36725688
25 Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance [J]. Adv. Funct. Mater., 2018, 28(3): 1704195
26 Bui H L, Nguyen C T V, Lee W-Y, et al. Dopamine-initiated photopolymerization for a versatile catechol-functionalized hydrogel [J]. ACS Appl. Bio Mater., 2021, 4(8): 6268
doi: 10.1021/acsabm.1c00564 pmid: 35006911
27 Zhong W, Xiong Y, Wang X, et al. Synthesis and characterization of multifunctional organic-inorganic composite hydrogel formed with tissue-adhesive property and inhibiting infection [J]. Mater. Sci. Eng. C, 2021, 118: 111532
28 Feng J, Dou J, Zhang Y, et al. Thermosensitive hydrogel for encapsulation and controlled release of biocontrol agents to prevent peanut aflatoxin contamination [J]. Polymers, 2020, 12(3): 547
29 Wang K, Ma Q, Zhang Y M, et al. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage [J]. Cellulose, 2020, 27(4): 1845
30 Olvera‐Sosa M, Guerra‐Contreras A, Gómez‐Durán C F A, et al. Tuning the pH‐responsiveness capability of poly(acrylic acid‐co‐itaconic acid)/NaOH hydrogel: Design, swelling, and rust removal evaluation [J]. J. Appl. Polym. Sci., 2020, 137(8): 48403
31 Grazioli G, Silva A F, Souza J F, et al. Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontium‐doped hydroxyapatite as promising biomaterials [J]. J. Biomed. Mater. Res., 2021, 109(7): 1160
32 Huang L, Mu X, Huang W, et al. Versatile surface modification of millimeter‐scale “aqueous pearls” with nanoparticles via self‐polymerization of dopamine [J]. Polym. Adv. Technol., 2021, 32(8): 3059
33 Travaglini L, Di Gregorio M C, Severoni E, et al. Deoxycholic acid and l-Phenylalanine enrich their hydrogel properties when combined in a zwitterionic derivative [J]. J. Colloid Interface Sci., 2019, 554: 453
34 Hirayama S, Kurokawa T, Gong J P. Non-linear rheological study of hydrogel sliding friction in water and concentrated hyaluronan solution [J]. Tribol. Int., 2020, 147: 106270
35 Zhao J, Diaz-Dussan D, Wu M, et al. Dual-cross-linked network hydrogels with multiresponsive, self-healing, and shear strengthening properties [J]. Biomacromolecules, 2021, 22(2): 800
doi: 10.1021/acs.biomac.0c01548 pmid: 33320540
36 Srivastava S, Levi A E, Goldfeld D J, et al. structure, morphology, and rheology of polyelectrolyte complex hydrogels formed by self-assembly of oppositely charged triblock polyelectrolytes [J]. Macromolecules, 2020, 53(14): 5763
37 Li Z, Liu Z, Ng T Y, et al. The effect of water content on the elastic modulus and fracture energy of hydrogel [J]. Extreme Mech. Lett., 2020, 35: 100617
38 Chen S, Huang J, Zhou Z, et al. Highly elastic anti-fatigue and anti-freezing conductive double network hydrogel for human body sensors [J]. Ind. Eng. Chem. Res., 2021, 60(17): 6162
39 Li Y, Chen J, Cai P, et al. An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation [J]. J. Mater. Chem. A, 2018, 6(12): 4948
40 Shao Z, Cheng W, Hu X, et al. An anti-pressure, fatigue-resistant and rapid self-healing hydrogel based on a nano-micelle assem-bly [J]. Polym. Chem., 2020, 11(13): 2300
[1] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[2] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
[3] 闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.
[4] 翁鑫, 李琦琪, 杨桂芳, 吕源财, 刘以凡, 刘明华. 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能[J]. 材料研究学报, 2024, 38(2): 92-104.
[5] 李宇轩, 杜永刚, 苏俊铭, 王智, 朱永飞. 超疏水苯并噁嗪-ZnO改性海绵的制备及其油水分离性能[J]. 材料研究学报, 2024, 38(1): 71-80.
[6] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[7] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[8] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[9] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[10] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[11] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[12] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[13] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.