|
|
在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理 |
尹艳超( ), 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍 |
中国船舶集团有限公司第七二五研究所 洛阳 471023 |
|
Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature |
YIN Yanchao( ), LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei |
Luoyang Ship Material Research Institute, Luoyang 471023, China |
引用本文:
尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.
Yanchao YIN,
Yifan LV,
Qianli LIU,
Yali XU,
Peng JIANG,
Wei YU.
Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. Chinese Journal of Materials Research, 2024, 38(3): 232-240.
1 |
Moiseyev V N. Titanium Alloys: Russian Aircraft and Aerospace Applications [M]. Boca Raton: CRC Press, 2005: 195
|
2 |
Donachie M J. Titanium: A Technical Guide 2nd ed [M]. Materials Park: ASM International, 2000: 1
|
3 |
Zhao Y Q, Chen Y N, Zhang X M, et al. Phase Transformation and Heat Treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012
|
3 |
赵永庆, 陈永楠, 张学敏 等. 钛合金相变及热处理 [M]. 长沙: 中南大学出版社, 2012
|
4 |
Huang C W, Ge P, Zhao Y Q, et al. Research progress in titanium alloys at cryogenic temperatures [J]. Rare Met. Mater. Eng., 2016, 45(1): 254
|
4 |
黄朝文, 葛 鹏, 赵永庆 等. 低温钛合金的研究进展 [J]. 稀有金属材料与工程, 2016, 45(1): 254
|
5 |
Hu Y J, Chen J, Li C L, et al. A kind of Ti-Al-Fe system alloys for ship use [J]. Acta Metall. Sin., 2002, 38(suppl.1) : 584
|
5 |
胡耀君, 陈 军, 李长亮 等. 一种Ti-Al-Fe系船用钛合金 [J]. 金属学报, 2002, 38(): 584
|
6 |
Wang Q L, Cheng X L, Yang Y L. Study on TA36 titanium alloy tube rolling technology [J]. World Nonferrous Met., 2021, (16): 107
|
6 |
王巧莉, 成小丽, 羊玉兰. TA36钛合金管材轧制工艺研究 [J]. 世界有色金属, 2021, (16): 107
|
7 |
Lütjering G, Williams J C. Titanium [M]. 2nd ed. Berlin: Springer-Verlag, 2007: 19
|
8 |
Williams J C, Baggerly R G, Paton N E. Deformation behavior of HCP Ti-Al alloy single crystals [J]. Metall. Mater. Trans., 2002, 33A: 837
|
9 |
Yin Y C, Yu B B, Zhang B B. Tensile behavior of commercial pure titanium at low temperature [J]. Dev. Appl. Mater., 2019, 34(2): 40
|
9 |
尹艳超, 于冰冰, 张斌斌. 工业纯钛的低温拉伸行为研究 [J]. 材料开发与应用, 2019, 34(2): 36
|
10 |
Sun Q Y, Gu H C. Tensile and low-cycle fatigue behavior of commercially pure titanium and Ti-5Al-2.5Sn alloy at 293 and 77 K [J]. Mater. Sci. Eng., 2001, 316A: 80
|
11 |
Nagai K, Ishikawa K, Mizoguchi T, et al. Strength and fracture toughness of Ti-5Al2.5Sn ELI alloy at cryogenic temperatures [J]. Cryogenics, 1986, 26: 19
doi: 10.1016/0011-2275(86)90190-6
|
12 |
Ghisi A, Mariani S. Mechanical characterization of Ti-5Al-2.5Sn ELI alloy at cryogenic and room temperatures [J]. Int. J. Fract., 2007, 146: 61
doi: 10.1007/s10704-007-9140-z
|
13 |
Akhtar A. Basal slip and twinning in α-titanium single crystals [J]. Metall. Trans., 1975, 6A: 1105
|
14 |
Ambard A, Guétaz L, Louchet F, et al. Role of interphases in the deformation mechanisms of an α/β titanium alloy at 20 K [J]. Mater. Sci. Eng., 2001, 319-321A: 404
|
15 |
Lei L, Zhao Q Y, Zhu Q W, et al. Twinning-induced high impact toughness of titanium alloy at cryogenic temperature [J]. Mater. Sci. Eng., 2022, 860A: 144258
|
16 |
Lei L, Zhu Q W, Zhao Q Y, et al. Low-temperature impact toughness and deformation mechanism of CT20 titanium alloy [J]. Mater. Charact., 2023, 195: 112504
doi: 10.1016/j.matchar.2022.112504
|
17 |
Soulami A, Choi K S, Shen Y F, et al. On deformation twinning in a 17.5% Mn-TWIP steel: a physically based phenomenological model [J]. Mater. Sci. Eng., 2011, 528A(3) : 1402
|
18 |
Lei C S, Deng X T, Li X L, et al. Simultaneous enhancement of strength and ductility through coordination deformation and multi-stage transformation induced plasticity (TRIP) effect in heterogeneous metastable austenitic steel [J]. Scr. Mater., 2019, 162: 421
doi: 10.1016/j.scriptamat.2018.12.007
|
19 |
Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley, 2003: 5
|
20 |
Wang X Q, Han W Z. Oxygen-gradient titanium with high strength, strain hardening and toughness [J]. Acta Mater., 2023, 246: 118674
doi: 10.1016/j.actamat.2023.118674
|
21 |
Zhao S T, Zhang R P, Yu Q, et al. Cryoforged nanotwinned titanium with ultrahigh strength and ductility [J]. Science, 2021, 373(6561): 1363
doi: 10.1126/science.abe7252
pmid: 34529490
|
22 |
Chong Y, Zhang R P, Hooshmand M S, et al. Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al [J]. Nat. Commun., 2021, 12(1): 6158
doi: 10.1038/s41467-021-26374-w
pmid: 34697309
|
23 |
Hooshmand M S. Atomic-scale modeling of twinning in titanium and other HCP alloys [D]. Columbus: The Ohio State University, 2019
|
24 |
Fitzner A, Leo Prakash D G, da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341
doi: 10.1016/j.actamat.2015.09.048
|
25 |
Liang Z, Miao J S, Brown T, et al. A low-cost and high-strength Ti-Al-Fe-based cast titanium alloy for structural applications [J]. Scr. Mater., 2018, 157: 124
doi: 10.1016/j.scriptamat.2018.08.005
|
26 |
Pan J S, Tong J M, Tian M B. Fundamentals of Materials Sci-ence [M]. Beijing: Tsinghua University Press, 2011
|
26 |
潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011
|
27 |
Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals [J]. Metall. Rev., 1967, 12(1): 169
doi: 10.1179/imr.1967.12.1.169
|
28 |
Luan Q M, Britton T B, Jun T S. Strain rate sensitivity in commercial pure titanium: the competition between slip and deformation twinning [J]. Mater. Sci. Eng., 2018, 734A: 385
|
29 |
Ahmed M, Wexler D, Casillas G, et al. Strain rate dependence of deformation-induced transformation and twinning in a metastable titanium alloy [J]. Acta Mater., 2016, 104: 190
doi: 10.1016/j.actamat.2015.11.026
|
30 |
Won J W, Choi S W, Yeom J T, et al. Anisotropic twinning and slip behaviors and their relative activities in rolled alpha-phase titanium [J] Mater. Sci. Eng., 2017, 698A: 54
|
31 |
Luo J R, Song X, Zhuang L Z, et al. Twinning behavior of a basal textured commercially pure titanium alloy TA2 at ambient and cryogenic temperatures [J]. J. Iron Steel Res. Int., 2016, 23(1): 74
doi: 10.1016/S1006-706X(16)30015-2
|
32 |
Yan Z W, Wang L, Ning Z X, et al. Evolution of dislocations and deformation twins in Ti6321 titanium alloy under contact explosion [J]. J. Mater. Res. Technol., 2023, 24: 1070
doi: 10.1016/j.jmrt.2023.03.027
|
33 |
Yu W X, Lv Y F, Li S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates [J]. Mater. Sci. Eng., 2015, 639A: 314
|
34 |
Yu W X, Li S K, Yin Y C, et al. Variation of microstructure and mechanical properties of Ti6321 alloy wire during the forming process [J]. Rare Met. Mater. Eng, 2017, 46(suppl.1) : 171
|
34 |
于卫新, 李士凯, 尹艳超 等. Ti6321合金丝成形过程中组织结构和性能演变研究 [J]. 稀有金属材料与工程, 2017, 46(): 171
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|