Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (3): 232-240    DOI: 10.11901/1005.3093.2023.230
  研究论文 本期目录 | 过刊浏览 |
在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理
尹艳超(), 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍
中国船舶集团有限公司第七二五研究所 洛阳 471023
Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature
YIN Yanchao(), LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei
Luoyang Ship Material Research Institute, Luoyang 471023, China
引用本文:

尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.
Yanchao YIN, Yifan LV, Qianli LIU, Yali XU, Peng JIANG, Wei YU. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. Chinese Journal of Materials Research, 2024, 38(3): 232-240.

全文: PDF(22584 KB)   HTML
摘要: 

在室温(25℃)和液氮温度(-196℃)测试Ti-Al-Fe合金的拉伸性能,并使用扫描电镜(SEM)、透射电镜(TEM)和电子背散射衍射(EBSD) 表征和分析破断后试样的显微组织和断口形貌,研究了这种合金的拉伸行为及其变形机理。结果表明,Ti-Al-Fe合金在25℃拉伸塑性变形后,在其显微组织中极少发现孪晶,其塑性变形机制主要为位错滑移。在-196℃该合金的强度和塑性较好,表现出孪晶诱发塑性效应,在塑性变形过程中生成了大量孪晶,其类型为{112-2}型压缩孪晶、{101-2}型拉伸孪晶和{112-4}型压缩孪晶,其塑性变形机制为滑移和孪生共存。在不同变形阶段孪晶的类型和数量不同,在变形初期孪晶的类型主要为{112-2}型孪晶,在变形后期{101-2}型孪晶的数量增多。

关键词 金属材料Ti-Al-Fe合金拉伸性能塑性变形机制孪晶    
Abstract

The tensile properties of Ti-Al-Fe alloy were assessed at 25oC and -196oC respectively, aiming to understand the service performance and plastic deformation mechanism of the low-cost Ti-Al-Fe alloy at extreme low temperatures, so that to ensure the service safety of the relevant engineering structures. The microstructure and fracture surface of the alloy were characterized by scanning electron microscope, transmission electron microscope and electron backscatter diffraction technology. The results show that twinning is rarely found in the microstructure of the alloy after plastic deformation at 25oC, and the plastic deformation mechanism is mainly dislocation slipping. Ti-Al-Fe alloy exhibits better strength and plasticity at 196oC, with clear twinning induced plastic effect. A large number of twins are produced during plastic deformation, which include{112-2} compression twins, {101-2} tensile twins, {112-4} compression twins. The plastic deformation mechanism may be ascribed to the coexistence of slipping and twinning. At the initial stage of deformation, {112-2} twins are mainly found, and the number of {101-2} twins increase at the later stage of deformation.

Key wordsmetallic materials    Ti-Al-Fe alloy    tensile property    plastic deformation mechanism    twinning
收稿日期: 2023-04-18     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金(51701189)
通讯作者: 尹艳超,alvinyin@sina.cn,研究方向为钛合金材料及其结构
Corresponding author: YIN Yanchao, Tel:(0379)64829315, E-mail: alvinyin@sina.cn
作者简介: 尹艳超,男,1989年生,本科
AlFeCNHOSiTi
0.9911.130.010.0060.0010.0850.01Bal.
表1  Ti-Al-Fe合金的化学成分
图1  Ti-Al-Fe合金的显微组织
StateTemperature / oCRp0.2/ MPaRm/ MPaA/ %Z/ %
As-received254096062341
-19680510243341
As-annealed253355302442
-19666910113934
表2  原始态和退火态Ti-Al-Fe合金的拉伸力学性能
图2  退火态Ti-Al-Fe合金拉伸试样在不同温度下的断口宏观形貌
图3  退火态Ti-Al-Fe合金在不同温度下拉伸试样断口的微观形貌
图4  在-196℃拉伸不同变形量后退火态Ti-Al-Fe合金的显微组织
图5  局部区域孪晶的形貌和取向
图6  在-196℃拉伸不同变形量后退火态Ti-Al-Fe合金的晶粒取向差百分比
图7  在25℃退火态Ti-Al-Fe合金拉伸塑性变形区域的TEM照片
图8  在-196℃退火态Ti-Al-Fe合金拉伸塑性变形区域的TEM照片
图 9  退火态Ti-Al-Fe合金棒材的EBSD测试结果
1 Moiseyev V N. Titanium Alloys: Russian Aircraft and Aerospace Applications [M]. Boca Raton: CRC Press, 2005: 195
2 Donachie M J. Titanium: A Technical Guide 2nd ed [M]. Materials Park: ASM International, 2000: 1
3 Zhao Y Q, Chen Y N, Zhang X M, et al. Phase Transformation and Heat Treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012
3 赵永庆, 陈永楠, 张学敏 等. 钛合金相变及热处理 [M]. 长沙: 中南大学出版社, 2012
4 Huang C W, Ge P, Zhao Y Q, et al. Research progress in titanium alloys at cryogenic temperatures [J]. Rare Met. Mater. Eng., 2016, 45(1): 254
4 黄朝文, 葛 鹏, 赵永庆 等. 低温钛合金的研究进展 [J]. 稀有金属材料与工程, 2016, 45(1): 254
5 Hu Y J, Chen J, Li C L, et al. A kind of Ti-Al-Fe system alloys for ship use [J]. Acta Metall. Sin., 2002, 38(suppl.1) : 584
5 胡耀君, 陈 军, 李长亮 等. 一种Ti-Al-Fe系船用钛合金 [J]. 金属学报, 2002, 38(): 584
6 Wang Q L, Cheng X L, Yang Y L. Study on TA36 titanium alloy tube rolling technology [J]. World Nonferrous Met., 2021, (16): 107
6 王巧莉, 成小丽, 羊玉兰. TA36钛合金管材轧制工艺研究 [J]. 世界有色金属, 2021, (16): 107
7 Lütjering G, Williams J C. Titanium [M]. 2nd ed. Berlin: Springer-Verlag, 2007: 19
8 Williams J C, Baggerly R G, Paton N E. Deformation behavior of HCP Ti-Al alloy single crystals [J]. Metall. Mater. Trans., 2002, 33A: 837
9 Yin Y C, Yu B B, Zhang B B. Tensile behavior of commercial pure titanium at low temperature [J]. Dev. Appl. Mater., 2019, 34(2): 40
9 尹艳超, 于冰冰, 张斌斌. 工业纯钛的低温拉伸行为研究 [J]. 材料开发与应用, 2019, 34(2): 36
10 Sun Q Y, Gu H C. Tensile and low-cycle fatigue behavior of commercially pure titanium and Ti-5Al-2.5Sn alloy at 293 and 77 K [J]. Mater. Sci. Eng., 2001, 316A: 80
11 Nagai K, Ishikawa K, Mizoguchi T, et al. Strength and fracture toughness of Ti-5Al2.5Sn ELI alloy at cryogenic temperatures [J]. Cryogenics, 1986, 26: 19
doi: 10.1016/0011-2275(86)90190-6
12 Ghisi A, Mariani S. Mechanical characterization of Ti-5Al-2.5Sn ELI alloy at cryogenic and room temperatures [J]. Int. J. Fract., 2007, 146: 61
doi: 10.1007/s10704-007-9140-z
13 Akhtar A. Basal slip and twinning in α-titanium single crystals [J]. Metall. Trans., 1975, 6A: 1105
14 Ambard A, Guétaz L, Louchet F, et al. Role of interphases in the deformation mechanisms of an α/β titanium alloy at 20 K [J]. Mater. Sci. Eng., 2001, 319-321A: 404
15 Lei L, Zhao Q Y, Zhu Q W, et al. Twinning-induced high impact toughness of titanium alloy at cryogenic temperature [J]. Mater. Sci. Eng., 2022, 860A: 144258
16 Lei L, Zhu Q W, Zhao Q Y, et al. Low-temperature impact toughness and deformation mechanism of CT20 titanium alloy [J]. Mater. Charact., 2023, 195: 112504
doi: 10.1016/j.matchar.2022.112504
17 Soulami A, Choi K S, Shen Y F, et al. On deformation twinning in a 17.5% Mn-TWIP steel: a physically based phenomenological model [J]. Mater. Sci. Eng., 2011, 528A(3) : 1402
18 Lei C S, Deng X T, Li X L, et al. Simultaneous enhancement of strength and ductility through coordination deformation and multi-stage transformation induced plasticity (TRIP) effect in heterogeneous metastable austenitic steel [J]. Scr. Mater., 2019, 162: 421
doi: 10.1016/j.scriptamat.2018.12.007
19 Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley, 2003: 5
20 Wang X Q, Han W Z. Oxygen-gradient titanium with high strength, strain hardening and toughness [J]. Acta Mater., 2023, 246: 118674
doi: 10.1016/j.actamat.2023.118674
21 Zhao S T, Zhang R P, Yu Q, et al. Cryoforged nanotwinned titanium with ultrahigh strength and ductility [J]. Science, 2021, 373(6561): 1363
doi: 10.1126/science.abe7252 pmid: 34529490
22 Chong Y, Zhang R P, Hooshmand M S, et al. Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al [J]. Nat. Commun., 2021, 12(1): 6158
doi: 10.1038/s41467-021-26374-w pmid: 34697309
23 Hooshmand M S. Atomic-scale modeling of twinning in titanium and other HCP alloys [D]. Columbus: The Ohio State University, 2019
24 Fitzner A, Leo Prakash D G, da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341
doi: 10.1016/j.actamat.2015.09.048
25 Liang Z, Miao J S, Brown T, et al. A low-cost and high-strength Ti-Al-Fe-based cast titanium alloy for structural applications [J]. Scr. Mater., 2018, 157: 124
doi: 10.1016/j.scriptamat.2018.08.005
26 Pan J S, Tong J M, Tian M B. Fundamentals of Materials Sci-ence [M]. Beijing: Tsinghua University Press, 2011
26 潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011
27 Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals [J]. Metall. Rev., 1967, 12(1): 169
doi: 10.1179/imr.1967.12.1.169
28 Luan Q M, Britton T B, Jun T S. Strain rate sensitivity in commercial pure titanium: the competition between slip and deformation twinning [J]. Mater. Sci. Eng., 2018, 734A: 385
29 Ahmed M, Wexler D, Casillas G, et al. Strain rate dependence of deformation-induced transformation and twinning in a metastable titanium alloy [J]. Acta Mater., 2016, 104: 190
doi: 10.1016/j.actamat.2015.11.026
30 Won J W, Choi S W, Yeom J T, et al. Anisotropic twinning and slip behaviors and their relative activities in rolled alpha-phase titanium [J] Mater. Sci. Eng., 2017, 698A: 54
31 Luo J R, Song X, Zhuang L Z, et al. Twinning behavior of a basal textured commercially pure titanium alloy TA2 at ambient and cryogenic temperatures [J]. J. Iron Steel Res. Int., 2016, 23(1): 74
doi: 10.1016/S1006-706X(16)30015-2
32 Yan Z W, Wang L, Ning Z X, et al. Evolution of dislocations and deformation twins in Ti6321 titanium alloy under contact explosion [J]. J. Mater. Res. Technol., 2023, 24: 1070
doi: 10.1016/j.jmrt.2023.03.027
33 Yu W X, Lv Y F, Li S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates [J]. Mater. Sci. Eng., 2015, 639A: 314
34 Yu W X, Li S K, Yin Y C, et al. Variation of microstructure and mechanical properties of Ti6321 alloy wire during the forming process [J]. Rare Met. Mater. Eng, 2017, 46(suppl.1) : 171
34 于卫新, 李士凯, 尹艳超 等. Ti6321合金丝成形过程中组织结构和性能演变研究 [J]. 稀有金属材料与工程, 2017, 46(): 171
[1] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[2] 齐恺力, 胡德江, 高崇, 刘峰, 庞建超, 邵琛玮, 杨梦起, 李守新, 张哲峰. 不同温度回火低合金钢缺口拉伸性能的预测[J]. 材料研究学报, 2024, 38(3): 197-207.
[3] 刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
[4] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[5] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[6] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[7] 曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.
[8] 刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.
[9] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[10] 杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.
[11] 秦艳利, 赵光普, 张昊, 倪丁瑞, 肖伯律, 马宗义. 选区激光熔融Al-30Si合金的微观组织和性能[J]. 材料研究学报, 2024, 38(1): 43-50.
[12] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[13] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[14] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[15] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.