Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (2): 151-160    DOI: 10.11901/1005.3093.2023.164
  研究论文 本期目录 | 过刊浏览 |
440 MPa级高强钢焊缝金属的断裂韧性
曾道平1,2, 安同邦1(), 郑韶先2, 代海洋1, 曹志龙1, 马成勇1
1.钢铁研究总院焊接研究所 北京 100081
2.兰州交通大学材料科学与工程学院 兰州 730070
Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel
ZENG Daoping1,2, AN Tongbang1(), ZHENG Shaoxian2, DAI Haiyang1, CAO Zhilong1, MA Chengyong1
1.Welding Research Institute of Iron and Steel Research Institute, Beijing 100081, China
2.School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
引用本文:

曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.
Daoping ZENG, Tongbang AN, Shaoxian ZHENG, Haiyang DAI, Zhilong CAO, Chengyong MA. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. Chinese Journal of Materials Research, 2024, 38(2): 151-160.

全文: PDF(18578 KB)   HTML
摘要: 

使用自研的Si-Mn-Ni气保护实心焊丝对440 MPa级高强钢进行MAG焊,并在系列温度下进行冲击试验、疲劳裂纹扩展速率试验和裂纹尖端张开位移试验,研究了焊缝金属的断裂韧性和显微组织对断裂韧性的影响。结果表明:焊缝金属的韧脆转变温度约为-48.4℃;随着恒幅载荷(13~17 kN)的增大载荷循环次数N减小、疲劳寿命降低,且在应力强度因子范围ΔK相同的情况下疲劳裂纹扩展速率da/dN总体上随着恒幅载荷的增大而减小;焊缝金属的CTOD值δ为0.481~0.781 mm,有效特征值δ0.2BL为0.5103 mm,CTOD值δ的离散系数仅为16.5%,表明焊缝金属的良好断裂韧性满足海洋工程的技术要求;阻碍裂纹扩展能力较强的针状铁素体使断裂韧性提高,而阻碍裂纹扩展能力较弱的准多边形铁素体和易诱发微裂纹的M-A组元使断裂韧性降低。

关键词 金属材料440 MPa级高强钢焊缝金属断裂韧性显微组织    
Abstract

Weld joints of 440 MPa grade high-strength steel were prepared via metal active-gas welding technique with a homemade Si-Mn-Ni gas-shielded solid welding wire as filler. Then the fracture toughness of the weld metals was studied by impact test, fatigue crack growth rate test, and crack tip opening displacement test at different temperatures, aiming to clarify the relation of microstructure and fracture toughness, so that to provide data support for the engineering application of the welding wire. The results show that the ductile-brittle transition temperature of the weld metal is about -48.4oC; With the increase of constant amplitude load (13~17 kN), the number of load cycles(N) and the fatigue life decreases continuously. Moreover, when the stress intensity factor range (ΔK) keeps the same, the fatigue crack growth rate (da/dN) decreases gradually with the increase of constant amplitude load; The CTOD value (δ) of weld metal is 0.481~0.781 mm, the effective characteristic value (δ0.2BL) is 0.5103 mm, and the dispersion coefficient of CTOD value(δ) is only 16.5%, The weld metal has good fracture toughness and meets the technical requirements of marine engineering; Acicular ferrite has the strong ability to block crack propagation, thus improving fracture toughness, while quasi-polygonal ferrite has the weak ability to block crack propagation and M-A constituent is easy to induce microcracks, thus reducing fracture toughness.

Key wordsmetallic materials    440 MPa grade high-strength steel    weld metal    fracture toughness    microstructure
收稿日期: 2023-03-16     
ZTFLH:  TG442  
通讯作者: 安同邦,高级工程师,anran30002000@sina.com,研究方向为高强钢焊接材料研制与焊接工艺开发
Corresponding author: AN Tongbang, Tel: 18201639982, E-mail: anran30002000@sina.com
作者简介: 曾道平,男,1997年生,硕士生
MaterialCSiMnNiCr+CuTiPSOther
Test panel< 0.06< 0.301.100.200.450< 0.03≤ 0.005≤ 0.005Trace
Solder wire0.0390.491.461.020.3910.019≤ 0.005≤ 0.005Trace
表1  试板和焊丝的化学成分
Material

Yield strength

Rp0.2 / MPa

Tensile strength

Rm / MPa

Elongation after

fracture A / %

Reduction of

Area Z / %

Poisson's

ratio μ

Elastic modulus

E / GPa

Test panel55261924.576--
Weld metal53859324.0780.3212
表2  试板和焊缝金属的力学性能
图1  试板坡口规格的示意图
图2  组织观察和性能测试位置的示意图
图3  CT试样和CTOD试样尺寸的示意图
图4  焊缝金属组织照片
图5  焊缝金属中的M-A组元及其显微硬度照片
Temperature20oC0oC-20oC-40oC-60oC-80oC
Absorbed energy / J

180; 191; 194

188.3

182; 195; 167

181.3

145; 168; 159

157.3

145; 148; 170

154.3

26; 19; 18

21.7

10; 9.6; 14

11.2

表3  系列温度冲击吸收功
图6  Boltzmann函数拟合曲线
图7  在不同温度下冲击断口的形貌
图8  不同恒幅载荷下的a-N曲线和da/dN-ΔK曲线
Pmax / kNa0 / mmaf / mmN / cycleCmR2da/dNK
1312.806429.70394264562.6841 × 10-93.16780.98302.6814 × 10-9K)3.1678
1513.659029.44381475852.1048 × 10-93.21180.98982.1048 × 10-9K)3.2118
1713.262628.04281125772.8874 × 10-93.08690.99841.8856 × 10-9K)3..0869
表4  疲劳裂纹扩展速率试验结果
图9  不同恒幅载荷下的断口形貌
Samplea01a02a03a04a05a06a07a08a09
114.2115.9816.7116.7516.3815.8616.0816.3116.07
214.9216.1416.8817.1417.0916.8616.1816.1115.83
316.4916.6716.4616.7117.2717.4717.2616.2614.42
415.5216.7117.4117.6517.5317.0716.4816.3016.03
516.4716.7216.2516.2216.4516.9317.0316.6015.55
617.2017.3616.8516.6917.0416.8617.4616.9015.58
表5  初始裂纹的长度 (mm)
Samplea1a2a3a4a5a6a7a8a9
115.0716.6317.6217.9017.9017.0516.9016.5816.21
215.0916.4317.4117.6017.6217.3016.6316.2315.98
316.5416.8616.8917.3917.8417.9817.6816.5514.95
416.3017.0518.1018.2818.2417.7017.1816.5016.12
516.5917.0117.0217.5017.9417.8217.5917.0316.06
617.3017.6717.4517.9018.3418.0517.8617.2516.06
表6  终止裂纹的长度 (mm)
SampleW / mmB / mmS / mmZ / mma0 / mmΔa / mmF / kNVp / mmδ / mm
132.0715.85128016.1510.87629.2223.3950.781
232.0815.90128016.4470.39127.7811.9950.481
332.0815.92128016.6940.42227.032.2010.516
432.1315.93128016.8660.54226.6492.4880.567
532.1615.95128016.5260.75327.7122.9870.661
632.1315.91128017.0190.63126.0882.6720.595
表7  CTOD的试验结果
图10  δ-Δa阻力曲线
图11  CTOD试样断口的形貌
图12  -40℃冲击断口纵剖面上的裂纹扩展形貌
1 Beidokhti B, Koukabi A H, Dolati A. Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel [J]. J. Mater. Process. Technol., 2008, 209(8): 4027
doi: 10.1016/j.jmatprotec.2008.09.021
2 Chen J, Li H Y, Zhou W H, et al. Effect of heat input on low temperature toughness and corrosion resistance of Q1100 steel welded joints [J]. Chin. J. Mater. Trans., 2022, 36(8): 617
2 陈 杰, 李红英, 周文浩 等. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响 [J]. 材料研究学报, 2022, 36(8): 617
3 An T B, Shan J G, Wei J S, et al. Effect of heat input on microstructure and performance of welded joint in 1000 MPa grade steel for construction machinery [J]. J. Mech. Eng., 2014, 50(22): 42
3 安同邦, 单际国, 魏金山 等. 热输入对1000 MPa级工程机械用钢接头组织性能的影响 [J]. 机械工程学报, 2014, 50(22): 42
doi: 10.3901/JME.2014.22.042
4 Liu C, Deng C Y, Wang S, et al. Critical fracture toughness of weld metal structure in submerged arc welding of EH36 steel [J]. Trans. China. Weld. Inst., 2019, 40(3): 107
4 刘 畅, 邓彩艳, 王 胜 等. EH36钢埋弧焊焊缝金属组织临界断裂韧性 [J]. 焊接学报, 2019, 40(3): 107
5 Barbosa L H S, Modenesi P J, Godefroid L B, et al. Fatigue crack growth rates on the weld metal of high input submerged arc welding [J]. Int. J. Fatigue., 2019, 119: 43.
doi: 10.1016/j.ijfatigue.2018.09.020
6 Yang Y H, Shi L, Xu Z, et al. Fracture toughness of the materials in welded joint of X80 pipeline steel [J]. Eng. Fract. Mech, 2015, 148: 337
doi: 10.1016/j.engfracmech.2015.07.061
7 Zhuo X, An T B, Ma C Y. Strengthening and toughening mechanisms of deposited metals for 420 MPa weathering bridge steel [J]. China Iron&Steel, 2022, 55(4): 88
7 卓 晓, 安同邦, 马成勇. 420 MPa级耐候桥梁钢用焊材熔敷金属强韧化规律 [J]. 钢铁, 2022, 55(4): 88
8 Zuo Y. Study on the toughening mechanism of 400 MPa grade low alloy high strength steel welding materials [D]. Beijing: Beijing Institute of Petrochemical Technology, 2022
8 左 月. 400 MPa级低合金高强钢焊接材料强韧化机理研究 [D]. 北京: 北京石油化工学院, 2022
9 . Metallic materials-fatigue testing-fatigue crack growth method [S]. Standardization Administration of the P.R.C, Beijing, 2017
9 . 金属材料疲劳裂纹扩展速率试验方法 [S]. 中国人民共和国标准化管理委员会, 北京, 2017
10 . Metallic materials-Unified method of test for determination of quasistatic fracture toughness [S]. Standardization Administration of the P.R.C, Beijing, 2014
10 . 金属材料准静态断裂韧度的统一试验方法 [S]. 中国人民共和国标准化管理委员会, 北京, 2014
11 Hong L, Zuo X R, Ji Y L, et al. Fracture behavior of thick X80 pipeline steel plates at -25oC [J]. Chin. J. Mater. Trans., 2018, 32(1): 33
11 洪 良, 左秀荣, 姬颖伦 等. 厚规格X80管线钢低温断裂行为研究 [J]. 材料研究学报, 2018, 32(1): 33
12 Lee S G, Kim B, Sohn S S, et al. Effects of local-brittle-zone(LBZ) microstructures on crack initiation and propagation in three Mo-added high-strength low-alloy [J]. Mater. Sci. Eng. A., 2019, 760: 125
doi: 10.1016/j.msea.2019.05.120
13 An T B, Wei J S, Shan J G, et al. Influence of shielding gas composition on microstructure characteristics of 1000 MPa grade deposited metals [J]. Acta. Metall. Sin., 2019, 55(5): 575
doi: 10.11900/0412.1961.2018.00375
13 安同邦, 魏金山, 单际国 等. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响 [J]. 金属学报, 2019, 55(5): 575
doi: 10.11900/0412.1961.2018.00375
14 Lan L Y, Kong X, Qiu C, et al. Influence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints [J]. Mater. Des., 2016, 90: 488
doi: 10.1016/j.matdes.2015.10.158
15 Yong Q L. Second Phase in Structural Steels [M]. Beijing: Metallurgical Industry Press, 2006: 145
15 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 145
16 Yan C, Chen J H, Luo Y C. Microstructure and toughness of weak links in multi-layer welds of low alloy high-strength steel [J]. Trans. China. Weld. Inst., 1992, 13(1): 21
16 阎 澄, 陈剑虹, 罗永春. 低合金高强钢多层焊缝薄弱环节的组织及韧性 [J]. 焊接学报1992, 13(1): 21
[1] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[3] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[4] 刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.
[5] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[6] 杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.
[7] 秦艳利, 赵光普, 张昊, 倪丁瑞, 肖伯律, 马宗义. 选区激光熔融Al-30Si合金的微观组织和性能[J]. 材料研究学报, 2024, 38(1): 43-50.
[8] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[9] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[10] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[11] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[12] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[13] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[14] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[15] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.