Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (8): 614-624    DOI: 10.11901/1005.3093.2022.494
  研究论文 本期目录 | 过刊浏览 |
纳米晶CoNiCrFeMn高熵合金的拉伸力学性能
陈晶晶1(), 占慧敏2, 吴昊3, 朱乔粼1, 周丹1, 李柯1
1.南昌理工学院机电工程学院 南昌 330044
2.南昌理工学院计算机信息工程学院 南昌 330044
3.北京航天发射技术研究所 北京 100048
Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy
CHEN Jingjing1(), ZHAN Huimin2, WU Hao3, ZHU Qiaolin1, ZHOU Dan1, LI Ke1
1.School of Mechanical and Electrical Engineering, Nanchang Institute of Technology, Nanchang 330044, China
2.School of Computer and Information Engineering, Nanchang Institute of Technology, Nanchang 330044, China
3.Beijing Institute of Space Launch Technology, Beijing 100048, China
引用本文:

陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
Jingjing CHEN, Huimin ZHAN, Hao WU, Qiaolin ZHU, Dan ZHOU, Ke LI. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. Chinese Journal of Materials Research, 2023, 37(8): 614-624.

全文: PDF(19027 KB)   HTML
摘要: 

研究了纳米晶CoNiCrFeMn高熵合金在拉伸过程中塑性变形产生的空洞裂纹的演化进程与其拉伸力学性能的相关性,比较了服役温度和平均晶粒尺寸对纳米晶CoNiCrFeMn高熵合金和纳米晶Ni的拉伸力学性能、微结构演化以及位错总长的影响。结果表明:服役温度从低温10 K升到高温1000 K时多晶CoNiCrFeMn高熵合金比单晶CoNiCrFeMn高熵合金屈服应力的降幅分别为14.9%、13.1%和17.4%;多晶Ni比单晶Ni屈服应力的降幅分别为38.9%、30%和32.3%。同时,随着服役温度的提高,纳米晶高熵合金和纳米晶镍的弹性模量和屈服强度呈线性下降趋势。晶界缺陷诱导的内应力和空洞裂纹缺陷,使多晶镍的屈服应力比单晶高熵合金百分比的降幅更大;空洞裂纹缺陷的产生和其外形尺寸改变是材料服役力学性能急剧下降以及纳米晶高熵合金和纳米晶镍拉伸力学性能显著差异的根本原因。拉伸载荷使多晶材料晶粒内先产生极多的内秉堆垛层错,且随着温度的升高大晶粒易分化出细小晶粒并出现晶粒细化的纳观现象。同时,受内应力的诱导多晶高熵合金和多晶镍更易在晶界边缘产生新位错,且位错分布与内应力分布的趋势一致;随着温度的升高热胀冷缩使多晶材料的晶界范围进一步扩张,使应力的分布区域比在低温下更大。

关键词 金属学空洞裂纹晶粒尺寸温度响应拉伸力学性能分子模拟    
Abstract

The tensile performance of high-entropy nanocrystalline- and single crystal-CoNiCrFeMn alloy, as well as polycrystalline- and single crystal-Ni metal, was comparatively assessed, while the evolution of their microstructures and the deformation induced difects such as dislocations, voids and cracks etc. with the deformation process and temperature was searched in an attempt to reveal the relationship between their mechanical performance and the aforesaid evolution. Results show that when the temperature lifting from 10 K to 1000 K, the yield stress of the high-entropy nanocrystalline CoNiCrFeMn alloy decreases by 14.9%, 13.1% and 17.4%, whose corresponding temperature is 10 K, 300 K and 1000 K respectively, in comparision to those of the high-entropy single crystal ones; While the tensile strength of the polycrystalline Ni decreased by 38.9%, 30% and 32.3% of that for single crystalline Ni, whose corresponding temperature is 10 K, 300 K and 1000 K respectively; Likewise, the elastic modulus and yield strength of the high entropy nanocrystalline alloy and nanocrystalline nickel decrease linearly with the increasing temperature. However, the overall decrease percentage of the value for yield stress of the polycrystalline nickel is greater than that of the high entropy single crystal alloy, owing to the exist of internal stresses, cracks and cavities induced by grain boundary defects of the former. It is thought that the geometry shape and size of the formed cavities and cracks are the fundamental cause responsible to the sharp decline of the mechanical properties of the similar materials in practical application, and also to the significant difference of the tensile mechanical properties between the high entropy nanocrystalline alloy and the nanocrystalline nickel. The applied tensile load may result in the formation of a large number of stacking faults within grains of polycrystalline materials, and thus the large grains are easy to be differentiated into fine grains with the increasing temperature, in other word, to realize the grain refinement. In addition, the high entropy polycrystalline alloy and polycrystalline nickel are more likely to generate latest dislocations at grain boundary edge induced by internal stresses, hence, the dislocation distribution is consistent with the internal stress distribution. With the increasing temperature, the distribution area of grain boundaries within polycrystalline materials will be further expanded due to thermal expansion, therefore, the area with internal stresses will enlarge accordingly, in comparison to that at lower temperature.

Key wordsmetallography    void crack    grain size    temperature response    tensile mechanical performance    molecular simulation
收稿日期: 2022-09-13     
ZTFLH:  O484  
基金资助:南昌理工学院机械表/界面摩擦磨损与防护润滑校级研究中心,江西省教育厅科学技术研究项目(GJJ2202705);南昌理工学院机械表/界面摩擦磨损与防护润滑校级研究中心,江西省教育厅科学技术研究项目(GJJ212101);南昌理工学院机械表/界面摩擦磨损与防护润滑校级研究中心,江西省教育厅科学技术研究项目(GJJ219310);南昌市重点实验室建设项目(2020-NCZDSY-005);南昌理工学院校级课题(NLZK-22-07);南昌理工学院校级课题(NLZK-22-01)
通讯作者: 陈晶晶,chenjingjingfzu@126.com,研究方向为机械表界面摩擦磨损与润滑防护
Corresponding author: CHEN Jingjing, Tel: 15750843783, E-mail: chenjingjingfzu@126.com
作者简介: 陈晶晶,男,1989年生,硕士
图1  多晶CoNiCrFeMn高熵合金拉伸时的原子尺度模型
图2  服役温度对单晶、多晶CoNiCrFeMn(平均晶粒尺寸0.76 nm)高熵合金拉伸力学性能的影响
图3  服役温度对单晶、多晶Ni(平均晶粒尺寸0.76 nm)拉伸力学性能的影响
图4  室温平均晶粒尺寸对多晶高熵合金和多晶镍拉伸力学性能的影响
图5  室温和应变ε=0.16下的平均晶粒尺寸对多晶Ni和多晶CoNiCrFeMn高熵合金中空洞缺陷的影响
图6  使役温度下多晶Ni不同拉伸应变时空洞缺陷的演化
图7  1000 K多晶镍晶粒细化演变的进程和裂纹拓展的失效
图8  不同使役温度下多晶CoNiCrFeMn高熵合金不同拉伸应变时微结构的演化
图9  应变ε=0.3的纳米晶镍和纳米晶高熵合金室温下的微结构对比,以及径向分布函数随温度的变化
图10  纳米晶CoNiCrFeMn高熵合金和纳米晶镍中位错的分布类型和位错总长随温度的变化
图11  不同使役温度对应的ε=0.3时纳米晶CoNiCrFeMn高熵合金和纳米晶镍的应力分布
1 Fu W J, Huang Y J, Sun J F, et al. Strengthening CrFeCoNi-Mn0.75Cu0.25 high entropy alloy via laser shock peening [J]. Int. J. Plast., 2022, 154: 103296
doi: 10.1016/j.ijplas.2022.103296
2 Tran N D, Saengdeejing A, Suzuki K, et al. Stability and thermodynamics properties of CrFeNiCoMn/Pd high entropy alloys from first principles [J]. J. Phase Equilib. Diffus., 2021, 42: 606
doi: 10.1007/s11669-021-00900-1
3 Gorban V F, Andreev A A, Chikryzhov A M, et al. The phase composition and mechanical properties of vacuum coatings produced from equiatomic CrFeCoNiMn alloy [J]. Powder Metall. Met. Ceram., 2019, 58: 58
doi: 10.1007/s11106-019-00047-2
4 Zheng T F, Lv J C, Wu Y, et al. Effects of stacking fault energy on the deformation behavior of CoNiCrFeMn high-entropy alloys: a molecular dynamics study [J]. Appl. Phys. Lett., 2021, 119: 201907
doi: 10.1063/5.0069108
5 Tripathi P K, Chiu Y C, Bhowmick S, et al. Temperature-dependent superplasticity and strengthening in CoNiCrFeMn high entropy alloy nanowires using atomistic simulations [J]. Nanomaterials, 2021, 11: 2111
doi: 10.3390/nano11082111
6 Li C, Xue Y F, Hua M T, et al. Microstructure and mechanical properties of Al x Si0.2CrFeCoNiCu1- x high-entropy alloys [J]. Mater. Des., 2016, 90: 601
doi: 10.1016/j.matdes.2015.11.013
7 Wang F J, Zhang Y, Chen G L. Atomic packing efficiency and phase transition in a high entropy alloy [J]. J. Alloys Compd., 2009, 478: 321
doi: 10.1016/j.jallcom.2008.11.059
8 Sun S J, Tian Y Z, Lin H R, et al. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement [J]. Mater. Sci. Eng., 2018, 712A: 603
9 Lee D H, Seok M Y, Zhao Y K, et al. Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys [J]. Acta Mater., 2016, 109: 314
doi: 10.1016/j.actamat.2016.02.049
10 Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mater. Lett., 2016, 184: 200
doi: 10.1016/j.matlet.2016.08.060
11 Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater., 2018, 151: 366
doi: 10.1016/j.actamat.2018.04.004
12 Du X, Lu X C, Shuang S Y, et al. Cyclic plasticity of CoCrFeMnNi high-entropy alloy (HEA): a molecular dynamics simulation [J]. Int. J. Appl. Mech., 2021, 13: 2150006
doi: 10.1142/S175882512150006X
13 Amar A, Li J F, Xiang S, et al. Additive manufacturing of high-strength CrMnFeCoNi-based High Entropy Alloys with TiC addition [J]. Intermetallics, 2019, 109: 162
doi: 10.1016/j.intermet.2019.04.005
14 Ding L, Wang H X, Quan X M. Microstructure and abrasion resistance of laser cladding CoCrFeNiTiNbB1.25 high-entropy alloys coatings treated by aging [J]. Sci. Adv. Mater., 2021, 13: 1479
doi: 10.1166/sam.2021.4010
15 Huang T D, Jiang L, Zhang C L, et al. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. Sci. China Technol. Sci., 2018, 61: 117
doi: 10.1007/s11431-017-9134-6
16 Xiang S, Zhang L, Liu X, et al. Effect of laser melting deposition process on microstructure and mechanical properties of CrMnFeCoNi high-entropy alloys [J]. Trans. Mater. Heart Treat., 2018, 39: 29
16 向 硕, 张 雷, 刘 学 等. 激光熔化沉积工艺对CrMnFeCoNi高熵合金组织和性能的影响 [J]. 材料热处理学报, 2018, 39: 29
17 Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
doi: 10.1016/j.actamat.2016.07.038
18 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
19 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
20 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
21 Lee B J, Shim J H, Baskes M I. Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method [J]. Phys. Rev., 2003, 68B: 144112
22 Dong B, Wang X M, Zhu Z L. Study on the mechanical performance and microstructure of FeCoCrCuNi high-entropy alloy with crack and void by molecular dynamics simulations [J]. J. Atom. Mol. Phys., 2020, 37: 591
22 董 斌, 王雪梅, 朱子亮. FeCoCrCuNi高熵合金裂纹及孔洞结构的力学与微观构象演化的分子动力学模拟研究 [J]. 原子与分子物理学报, 2020, 37: 591
23 Fang Q H, Chen Y, Li J, et al. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys [J]. Int. J. Plast., 2019, 114: 161
doi: 10.1016/j.ijplas.2018.10.014
24 Xiang H G, Li H T, Fu T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Mater., 2017, 138: 131
doi: 10.1016/j.actamat.2017.06.045
25 Qian Y, Shang F L, Wan Q, et al. The mechanism of plastic deformation in intact and irradiated GaN during indentation: a molecular dynamics study [J]. Comput. Mater. Sci., 2018, 149: 230
doi: 10.1016/j.commatsci.2018.03.041
26 Goel S, Luo X C, Reuben R L. Shear instability of nanocrystalline silicon carbide during nanometric cutting [J]. Appl. Phys. Lett., 2012, 100: 231902
doi: 10.1063/1.4726036
27 Li Y C, Jiang W G, Zhou Y. Molecular dynamics simulations of the tensile mechanical response of single crystal/polycrystalline nickel [J]. Rare Met. Mater. Eng., 2020, 49: 2372
27 李源才, 江五贵, 周 宇. 单晶/多晶镍拉伸力学性能的分子动力学模拟 [J]. 稀有金属材料与工程, 2020, 49: 2372
28 Sun S J, Tian Y Z, Lin H R, et al. Temperature dependence of the Hall-Petch relationship in CoCrFeMnNi high-entropy alloy [J]. J. Alloys Compd., 2019, 806: 992
doi: 10.1016/j.jallcom.2019.07.357
29 Guo J, Chen J J, Wang Y Q. Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: a molecular dynamics study [J]. Ceram. Int., 2020, 46: 12686
doi: 10.1016/j.ceramint.2020.02.035
[1] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[2] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[3] 宁博, 李志超, 武会宾, 张丙军, 黄曼丽, 丁超. 改善09MnNi容器钢低温冲击韧性的机理[J]. 材料研究学报, 2022, 36(9): 660-666.
[4] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 淬火冷却速率对海洋平台用Ni-Cr-Mo-B钢性能的影响[J]. 材料研究学报, 2022, 36(4): 250-260.
[5] 胡瑞航, 杨贞, 雷齐俊, 李昕洋, 董子宇, 张晓彤, 范红玉, 牛金海. 氦离子辐照对钨纳米丝稳定性的影响[J]. 材料研究学报, 2022, 36(11): 850-854.
[6] 玄京凡, 范红玉, 白樱, 胡瑞航, 李昕洋, 陶文辰, 倪维元, 牛金海. 低能大流强氢离子辐照对钨的刻蚀行为[J]. 材料研究学报, 2020, 34(9): 659-664.
[7] 郑勰, 查刘生. 超快温度响应性纳米纤维水凝胶的制备及其用于药物的可控释放[J]. 材料研究学报, 2020, 34(6): 452-458.
[8] 孙京丽,周海涛,陈莉,吴宏,刘维丽,姚斐,徐玉棱. 晶粒尺寸对304奥氏体不锈钢组织演变和性能的影响[J]. 材料研究学报, 2020, 34(3): 231-240.
[9] 施渊吉,于林惠,于照鹏,成功,吴晓春,滕宏春. 热作模具钢DM的高温稳定性和热疲劳性能[J]. 材料研究学报, 2020, 34(2): 125-136.
[10] 李滢,陈小龙,孙超,宫骏. 热障涂层陶瓷层材料LnMgAl11O19(Ln=La, Nd)粉体的性能[J]. 材料研究学报, 2019, 33(6): 409-418.
[11] 涂坚,刘雷,丁石润,李建波,周志明,董安平,黄灿. 预变形程度和变形温度对CoCrFeMnNi高熵合金的变形机制及后续再结晶行为的影响[J]. 材料研究学报, 2019, 33(6): 427-434.
[12] 吴良,范红玉,倪维元,许洋,鲍森,张雨薇,周思倩,牛金海. 氦离子辐照下钨纳米丝的自保护行为[J]. 材料研究学报, 2019, 33(11): 809-814.
[13] 周一凡, 郑勰, 周剑锋, 查刘生. 温度响应性中空纳米纤维膜的制备和表征[J]. 材料研究学报, 2018, 32(5): 327-332.
[14] 郝志玲,范红玉,郭佳玉,胡婷婷,李萌,崔荷敬,张碧璇. He等离子体辅助的纳米钨结构材料的制备[J]. 材料研究学报, 2017, 31(6): 415-421.
[15] 周路海, 韦习成, 王春燕, 鲁军, 王武荣. T10钢的干滑动摩擦学行为与晶粒尺寸的关系[J]. 材料研究学报, 2017, 31(11): 833-838.