Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (4): 313-320    DOI: 10.11901/1005.3093.2020.316
  研究论文 本期目录 | 过刊浏览 |
热喷涂复合结构MCrAlY/8YSZ热障涂层的抗剥落能力
刘福广1(), 陈胜军2, 潘红根2, 董鹏3, 马英民2, 黄杰2, 杨二娟1, 米紫昊1, 王艳松1, 雒晓涛4
1.西安热工研究院有限公司 西安 710054
2.华能国际电力股份有限公司长兴电厂 长兴 313100
3.国家能源集团焦作电厂有限公司 焦作 454100
4.西安交通大学金属材料强度国家重点实验室 西安 710049
Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance
LIU Fuguang1(), CHEN Shengjun2, PAN Honggen2, DONG Peng3, MA Yingmin2, HUANG Jie2, YANG Erjuan1, MI Zihao1, WANG Yansong1, LUO Xiaotao4
1.Xi'an Thermal Power Research Institute Co. , Ltd. , Xi'an 710054, China
2.Huaneng International Electricity Co. , Ltd. , Changxin Power Plant, Changxin 313100, China
3.National Energy Group, Jiaozuo Power Plant Co. , Ltd, Jiaozuo 454100, China
4.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

刘福广, 陈胜军, 潘红根, 董鹏, 马英民, 黄杰, 杨二娟, 米紫昊, 王艳松, 雒晓涛. 热喷涂复合结构MCrAlY/8YSZ热障涂层的抗剥落能力[J]. 材料研究学报, 2021, 35(4): 313-320.
Fuguang LIU, Shengjun CHEN, Honggen PAN, Peng DONG, Yingmin MA, Jie HUANG, Erjuan YANG, Zihao MI, Yansong WANG, Xiaotao LUO. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. Chinese Journal of Materials Research, 2021, 35(4): 313-320.

全文: PDF(9051 KB)   HTML
摘要: 

在陶瓷涂层与金属粘接层之间制备一层NiCoCrAlTaY/YSZ复合过渡层和通过半熔化团聚YSZ粉末制备层状/多孔团状复合结构YSZ隔热层,用SEM表征了涂层的显微组织;依照ASTM C633标准测试了涂层的结合强度;用压痕法测试了陶瓷层的弹性模量和断裂韧性。用激光脉冲法测试了陶瓷层的热导率。用高温水淬快速冷却实验验证涂层的抗剥落性能。结果表明,在不降低涂层隔热效果的前提下复合过渡层和和隔热层显著提高了涂层的抗剥落能力。HVOF制备的NiCoCrAlTaY粘接层组织致密,没有明显的氧化物;APS制备的NiCoCrAlTaY/YSZ复合过渡层内层间的结合良好,组织致密,金属与陶瓷粒子呈现出典型的层状交替分布特征;陶瓷层由典型层状结构内包含约11%未完全熔化团聚粉末形成的弥散分布多孔团状组织构成。复合结构使等离子喷涂TBC的结合强度由25.8 MPa提高到38.6 MPa,陶瓷层的弹性模量和热导率没有明显的变化,但是断裂韧性提高了1倍以上,涂层出现30%剥落的平均水淬周次由19.7次提高到72.1次,表明抗剥落能力显著提高。

关键词 材料表面与界面超超临界锅炉机组热障涂层热喷涂复合结构抗剥落能力    
Abstract

A thermal barrier coating (TBC) of MCrAlY/8YSZ with hybrid microstructure was prepared on 15CrMo stainless steel by means of HVOF spraying technique, namely the coating consists of a hybrid structured YSZ top-coat made of mixture of agglomerated and fused and crushed YSZ powder and a bond coat of NiCoCrAlTaY, while an intermediate layer of NiCoCrAlTaY/YSZ composite was inserted in between the above two coats. The bonding strength and fracture toughness of the YSZ coating can be improved by these two strategies to enhance the spallation resistance of the TBC. Two individual powder feeders were used to feed the NiCoCrAlY and YSZ powder independently into the plasma plume so that the feeding rate and heating experience of both powders can be controlled independently. SEM was used to characterize the coating microstructure. Adhesion of the TBC coating was examined according to ASTM C633 Standard. Elastic modulus, fracture toughness and thermal conductivity of the YSZ layer were measured. Spallation resistance of the coating was assessed by water quenching test from 750°C. The results show that the desired coating microstructure was achieved by HVOF and APS, and all the three layers bond well each other without any interfacial cracks. The adhesion strength of the YSZ coat increases from 25.8 MPa to 38.6 MPa. Evident changes in elastic modulus and thermal conductivity were not detected. A great improvement of 100% in fracture toughness of the YSZ coating was achieved. As a result of all the above measures, the occurrence of 30% area spallation for the top coat could be rose to 72.1 cycles during water quenching test, in comparison, only 19.7 for the TBC made of the same material with conventionally desired structure.

Key wordssurface and interface in the materials    ultra supercritical boiler    TBCs    thermal spray    hybrid structure    spallation resistance
收稿日期: 2020-07-28     
ZTFLH:  TG178  
图1  MCrAlY/8YSZ热障涂层复合结构简图
图2  等离子喷涂用NiCoCrAlTaY粉末 (a、b、c)与YSZ陶瓷粉末(d、e、f)的形貌、断面与粒度分布;(a) NiCoCrAlTaY粉末形貌; (b) NiCoCrAlTaY粉末断面 (c) NiCoCrAlTaY粉末粒度分布;(d) 熔炼破碎YSZ粉末形貌;(e) 团聚烧结YSZ粉末形貌;(f) 团聚烧结YSZ粉末断面.
Oxygen flow rate (slpm)Kerosene flow rate /h-1Stand-off distance/mm

Powder feed rate

/g·min-1

Gun traverse speed /mm·s-1
185022.7370751000
表1  NiCoCrAlTaY粘接层的HVOF喷涂参数
ParametersNiCoCrAlTaY/8YSZ bond coat8YSZ coating
Power/kW3039
Pressure of primary gas/Ar/MPa0.80.8
Flow of primary gas/h-15555
Pressure of secondary gas/H2/MPa0.40.4
Flow of secondary gas/SLM7.07.0
Pressure of feeding gas/N2/MPa0.20.2
Flow of feeding gas/SLM74
Rotation speed of powder feeder/r·min-163
Standoff distance/mm10085
表2  复合结构粘接层与陶瓷隔热层的等离子喷涂参数
图3  复合结构MCrAlY/8YSZ热障涂层的断面显微结构
图4  复合结构MCrAlY/8YSZ热障涂层与常规层状结构热障涂层结合强度的对比
图5  复合结构/8YSZ陶瓷层与常规层状结构8YSZ陶瓷层弹性模量和断裂韧性的对比
图6  复合结构8YSZ涂层与常规层状结构8YSZ涂层热导率的对比
图7  常规热障涂层与复合结构热障涂层的水淬热冲击寿命的对比
图8  常规热障涂层和复合结构热障涂层热循环失效后样品表面形貌的对比
1 Li J Y. The application of boiler explosion-proof tube measure in the installation process of power station boiler [J]. Urb. Cons. Th. Res., 2016,15: 828
1 李吉扬. 锅炉防爆管措施在电站锅炉安装过程中应用 [J]. 城市建设理论研究, 2016, 15: 828
2 Guo B. Study on construction technology of explosion-proof tube for ultra-supercritical Boiler in thermal power Plant [J]. Shanxi. Arch., 2013, 39: 146
2 郭兵. 火力发电厂超超临界锅炉防爆管施工工艺研究 [J]. 山西建筑, 2013, 39: 146
3 Yang Y W. Discussion on technical Management of SA-213TP310HCBN(HR3C) Pipe Blasting in thermal power plant [J]. Chin. Pl. Eng., 2017, 24: 153
3 杨有文. 火电厂高温再热器SA-213TP310HCBN(HR3C)管材爆管技术管理探讨 [J]. 中国设备工程, 2017, 24: 153
4 Fang J F, Dong X P, Xiong W, et al. Causes of cracking of welded joint of T91 steel steam sampling tube for ultra supercritical boiler unit [J]. Mater. Mech. Eng., 2016, 40: 109
4 范吉富, 董显平, 熊伟等. 超超临界机组锅炉用T91钢蒸汽采样管焊接接头开裂的原因 [J]. 机械工程材料, 2016, 40: 109
5 Mehboob G, Liu M J, Xu T, et al. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime [J]. Ceram. Int., 2020, 46: 8497
6 Dong H. Yang G. J. Li C. J. Propagation feature of cracks in plasma-sprayed YSZ coatings under gradient thermal cycling [J]. Ceram. Int., 2015, 41, Part A: 3481
7 Marshall D B, Noma T, Evans A G. A simple method for determining elastic-modulus-to-hardness ratios using Knoop indentation measurements [J]. J. Am. Ceram. Soc., 1982, 65: C175
8 Li Y. Control of thermal barrier coating structure and its influence on thermal shock life [D]. Xi'an: Xi 'an Jiaotong University, 2010
8 李勇. 热障涂层组织结构的控制及其对热震寿命的影响 [D]. 西安: 西安交通大学, 2010
9 Li Y, Xue Z, Luan Y, et al. Improved mechanical performance of graphene oxide based artificial nacre composites by regulating the micro-laminated structure and interface bonding [J]. Compos. Sci. Technol., 2019, 179: 63
10 Wang S X, Liu X J, Wang R J. Research progress of long life thermal barrier coating technology [J]. J. Therm. Spray Techn., 2012, 4: 1
11 Li Y, Li C J, Yang G J, et al. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying [J]. Surf. Coat. Tech., 2010, 205: 2225
12 Chen B. Wei Z Y, Chen L,et al. Prolong the durability of La2Zr2O7/YSZ TBCs by decreasing the cracking driving force in ceramic coatings [J]. J. Eur. Ceram. Soc., 2018, 38: 5482
13 Wei S B, Lu F, He L, et al. Research progress on preparation technology of thermal barrier coating and ceramic coating materials [J]. J. Therm. Spray. Techn., 2013, 5: 31
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李瑞一, 谢敏, 张永和, 裴训, 刘洋, 宋希文. Er2O3掺杂Gd2(Zr0.8Ti0.2)2O7陶瓷的物理性能[J]. 材料研究学报, 2022, 36(1): 49-54.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.