Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (2): 115-127    DOI: 10.11901/1005.3093.2020.193
  研究论文 本期目录 | 过刊浏览 |
NF/PDMA/MnO2-Co电容电极对低浓度Pb2+的电吸附特性
唐长斌1(), 牛浩2, 黄平1, 王飞2, 张玉洁1, 薛娟琴1
1.西安建筑科技大学化学与化工学院 西安 710055
2.西安建筑科技大学冶金工程学院 西安 710055
Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions
TANG Changbin1(), NIU Hao2, HUANG Ping1, WANG Fei2, ZHANG Yujie1, XUE Juanqin1
1.School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
引用本文:

唐长斌, 牛浩, 黄平, 王飞, 张玉洁, 薛娟琴. NF/PDMA/MnO2-Co电容电极对低浓度Pb2+的电吸附特性[J]. 材料研究学报, 2021, 35(2): 115-127.
Changbin TANG, Hao NIU, Ping HUANG, Fei WANG, Yujie ZHANG, Juanqin XUE. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. Chinese Journal of Materials Research, 2021, 35(2): 115-127.

全文: PDF(16070 KB)   HTML
摘要: 

在泡沫镍基体上进行阳极电沉积制备了NF/PDMA/MnO2-Co电极,使用FESEM-EDS、XPS和Raman谱、循环伏安和电容吸脱附测试等手段表征了复合电极的结构和评价其电容特性和对Pb2+的吸附行为。结果表明,在电流密度为1 mA/cm2、30℃和3 min条件下制备的NF/PDMA/MnO2-Co复合电极,在Pb2+浓度为20 mg/L的模拟废水中有比较高的比电容值(208.8 F/g),对Pb2+有较高的吸附容量(59.9 mg/g);PDMA底层与Co掺杂MnO2表层的协同作用提高了MnO2电极电容和吸附性能;吸附动力学拟合表明,复合电极的吸附过程受物理、化学吸附混合控制,并受离子传质和孔隙内扩散的限制;电极的稳定性好,4次循环吸附后的吸附量仍达到51.7 mg/g。

关键词 材料表面与界面MnO2电极电沉积Pb2+电容去离子    
Abstract

NF/PDMA/MnO2-Co electrode was prepared by anodic electrodeposition on the foam nickel substrate, and which then was characterized by FESEM-EDS, XPS and Raman spectroscopy. The capacitance characteristics and Pb2+ adsorption behavior of the composite electrode were evaluated by cyclic voltammetry and capacitance adsorption desorption tests. The results show that the NF/PDMA/MnO2-Co composite electrode prepared by applied current density of 1 mA/cm2 at 30 ℃ for 3min has a higher adsorption capacity (59.9 mg/g) and specific capacitance (208.8 F/g) for the simulated wastewater of 20 mg/L Pb2+. The synergistic effect of the bottom layer of PDMA and the top layer of Co doped MnO2 can effectively improve the capacitance and adsorption performance of the MnO2 electrode. The adsorption kinetics fitting shows that the adsorption process is controlled by the mixture of physical and chemical adsorption, and is limited by the mass transfer of ions and the diffusion in pores. The stability of the electrode is higher, and its adsorption capacity is 51.7 mg/g after four cycles of adsorption.

Key wordssurface and interface in the materials    MnO2 electrode    electrodeposition    Pb2+    capacitive deionization
收稿日期: 2020-05-28     
ZTFLH:  TQ174  
基金资助:国家自然科学基金(51874227);陕西省自然科学基金(2018JM5131)
作者简介: 唐长斌,男,1973年生,副教授
图1  吸附实验图示
图2  PDMA-3 min电极和MnO2-Co-3min电极的表面形貌
图3  NF/PDMA/MnO2-Co电极的形貌
图4  PDMA聚合膜的XPS谱
图5  NF/PDMA/MnO2-Co电极表面的XPS谱
图6  PDMA底层和NF/PDMA/MnO2-Co电极表面的Raman谱
图7  沉积时间不同的PDMA和MnO2-Co涂层的CV 测试结果
图8  电极的CV曲线
图9  三种电极对Pb2+的电吸附行为
图10  Pb2+吸附的动力学拟合
ElectrodesCo/mg·L-1qexp/mg·g-1Pseudo first-order kineticsPseudo second-order kinetics
k1/min-1qcal/mg·g-1R2k2/g·mg-1 min-1qcal/mg·g-1R2
NF/MnO2-Co2020.10.041330.50.93480.00040236.10.9958
NF/PDMA2034.10.052363.20.93660.00030857.50.9788
NF/PDMA/MnO2-Co2059.90.034042.30.99400.00089669.40.9967
表1  准一级和准二级动力学拟合Pb2+吸附参数
Electrodesα/m·(g·min-1)-1β/g·mg-1R2
NF/MnO2-Co1.06750.12930.9943
NF/PDMA2.09140.07560.9928
NF/PDMA/MnO2-Co5.47430.07450.9979
表2  三种电极吸附Pb2+的Elovich动力学参数
ElectrodesC0/mg·L-1First linear portionSecond linear portionThird linear portion
K1/mg·min1/2·g-1C1R2K2/mg·min1/2·g-1C2R2R2
NF/MnO2-Co202.171-2.2030.96532.628-3.5080.9987Null
NF/PDMA204.246-4.9760.99694.359-4.7290.9838Null
NF/PDMA/MnO2-Co2013.669-17.4070.99814.2520.470.9847Null
表3  三种电极Pb2+吸附的Weber-Morris参数
图11  三种电极的循环稳定性
1 Gottesfeld P, Cherry C R. Lead emissions from solar photovoltaic energy systems in China and India [J]. Energy Policy, 2011, 39(9): 4939
2 Gunatilake S K. Methods of removing heavy metals from industrial wastewater [J]. JMESS, 2015(1): 12
3 Almarzooqi F A, Al Ghaferi A A, Saadat I, et al. Application of capacitive deionisation in water desalination: a review [J]. Desalination, 2014, 342: 3
4 Zhang C X, Jiang Z Y, Dai Y M, et al. Preparation and supercapacitance of C-ZIF-8@AC composites electrode material [J]. Chinese Journal of Materials Research, 2019, 33(5): 352
4 张传香, 江中仪, 戴玉明等. C-ZIF-8@AC复合电极材料的制备及超电容性能研究 [J]. 材料研究学报, 2019, 33(5): 352
5 Feng X H, Zhai L M, Tan W F, et al. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals [J]. Environ. Pollut., 2007, 147(2): 366
6 Xu J, Sun Y, Lu M, et al. Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors [J]. Chem. Eng. J., 2018, 334: 1466
7 Xu W, Jiang Z, Yang Q, et al. Approaching the lithium-manganese oxidesʼ energy storage limit with Li2MnO3 nanorods for high-performance supercapacitor [J]. Nano Energy, 2018, 43: 168
8 Wang J G, Kang F, Wei B. Engineering of MnO2-based nanocomposites for high-performance supercapacitors [J]. Prog. Mater. Sci., 2015, 74: 51
9 Chen Y, Wang M, Hu Y, et al. Poly(2-aminothiophenol)/MnO2 hierarchical nanocables as efficient adsorbents towards heavy metal ions [J]. Mater. Chem. Phys., 2018, 214: 172
10 Yang J, Zou L, Song H, et al. Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology [J]. Desalination, 2011, 276(1-3): 199
11 Yang J, Zou L, Song H. Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionisation [J]. Desalination, 2012, 286: 108
12 Shi W B, Zhou X C, Li J Y, et al. High-performance capacitive deionization via manganese oxide-coated, vertically aligned carbon nanotubes [J]. Environ. Sci. Technol. Lett., 2018, 5: 692
13 Xiong S, Shi Y, Chen S, et al. Interfacial poly Yan L erization of poly(2,5-dimethoxyaniline) and its enhanced capacitive performances [J]. J. Appl. Polym. Sci., 2014, 131(17): 8407
14 Shao D, Hou G, Li J, et al. PANI/GO as a super adsorbent for the selective adsorption of uranium(VI) [J]. Chem. Eng. J., 2014, 255(7): 604. 2000, 31(5): 548
15 Yan L S, Wei Q, Wang C Y, et al. Mechanism in electrochemical synthesis of polyaniline film and its doped behaviour [J]. Journal of Functional Materials, 2000, 31(5): 548
15 颜流水, 魏洽, 王承宜等. 聚胺膜的电化学合成机理及掺杂行为 [J]. 功能材料, 2000, 31(5): 548
16 Tang C B, Lu Y X, Wang F, et al. Influence of a MnO2-WC interlayer on the stability and electrocatalytic activity of titanium-based PbO2 anodes [J]. Electrochim. Acta, 2020, 331: 135381
17 Shi Y H, Meng H M, Sun D B, et al. The research of manganese oxide coating electrodeby anode electrodeposit process [J]. Heat Treatment Technology and Equipment, 2008(1): 39
17 史艳华, 孟惠民, 孙冬柏等. 阳极电沉积法制备锰类氧化物涂层电极的研究 [J].热处理技术与装备, 2008(1): 39
18 Ma Y, Hou C, Zhang H, et al. Synthesis of PANI solid microspheres with convex-fold surface via using polyvinylpyrrolidone micellar template [J]. Synth. Met., 2016, 222: 388
19 Huang H, He M, Yang X, et al. One-pot hydrothermal synthesis of TiO2/RCN heterojunction photocatalyst for production of hydrogen and rhodamine B degradation [J]. Appl. Surf. Sci., 2019, 493: 202
20 Jing L, Xu Y, Xie M, et al. Three dimensional polyaniline/MgIn2S4 nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H2 production [J]. Chem. Eng. J., 2018, 360: 1601
21 Wang Y, Lei Y, Li J, et al. Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor [J]. ACS Appl. Mater. Interfaces, 2014, 6(9): 6739
22 Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M. Polyaniline-cerium oxide (PANI-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel [J]. Corrosion Sci., 2018, 137: 111
23 He Y, Du S, Li H, et al. MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes [J]. J. Solid State Electrochem., 2016, 20(5): 1459
24 Mezgebe M M, Xu K, Wei G, et al. Polyaniline wrapped manganese dioxide nanorods: Facile synthesis and as an electrode material for supercapacitors with remarkable electrochemical properties [J]. J. Alloy. Compd., 2019, 794: 634
25 Oyedotun K O, Madito M J, Momodu D Y, et al. Synthesis of ternary NiCo-MnO2 nanocomposite and its application as a novel high energy supercapattery device [J]. Chem. Eng. J., 2018, 335: 416
26 Li Y, Cai X, Shen W. Preparation and performance comparison of supercapacitors based on nanocomposites of MnO2 with cationic surfactant of CTAC or CTAB by direct electrodeposition [J]. Electrochim. Acta, 2014, 149: 306
27 Sun Z, Park Y, Zheng S, et al. Thermal stability and hot-stage Raman spectroscopic study of Ca-montmorillonite modified with different surfactants: A comparative study [J]. Thermochim. Acta, 2013, 569(Complete): 151
28 Xiong S, Kong Z, Lan J, et al. Fabrication of high yield and highly crystalline poly(2,5-dimethoxyanline) nanoplates using various organic sulfonic acids as the dopant agents and soft-templates [J]. J. Mater. Sci.-Mater. Electron., 2016, 27(11): 1
29 Bao X J, Zhang Z J, Zhou D B. Pseudo-capacitive performance enhancement of α-MnO2 via in situ coating with polyaniline [J]. Synth. Met., 2020, 260: 112671
30 Yan L J, Niu L Y, Shen C. Modulating the electronic structure and pseudocapacitance of δ-MnO2 through transitional metal M (M=Fe, Co and Ni) doping [J]. Electrochim. Acta, 2019, 306: 529
31 Zhang H, Gu L, Zhang L, et al. Removal of aqueous Pb(II) by adsorption on Al2O3-pillared layered MnO2 [J]. Appl. Surf. Sci., 2017, 406: 330
32 Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon [J]. Chem. Eng. Res. Des., 2016, 109: 495
33 Omorogie M O, Babalola J O, Unuabonah E I, et al. Solid phase extraction of hazardous metals from aqua system by nanoparticle-modified agrowaste composite adsorbents [J]. J. Environ. Chem. Eng., 2014, 2(1): 675
34 Runtti H, Tuomikoski S, KangasT, et al. Chemically activated carbon residue from biomass gasification as a sorbent for iron(II), copper(II) and nickel(II) ions [J]. J. Water. Process. Eng., 2014, 4: 12
35 Zheng X G, Kang F Y, Liu X H, et al. Carbon-coated Mg-Al layered double oxide nanosheets with enhanced removal of hexavalent chromium [J]. J. Ind. Eng. Chem., 2019, 80: 53
36 Eeshwarasinghe D, Loganathan P, Vigneswaran S. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon [J]. Chemosphere, 2019, 223: 616
37 Bertagnolli C, da Silva M G C, Guibal E. Chromium biosorption using the residue of alginate extraction from Sargassum filipendula [J]. Chem. Eng. J., 2014, 237: 362
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[9] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[10] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[11] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.