|
|
超快冷工艺下X80管线钢的DWTT裂纹扩展行为 |
赵金华1, 王学强1,2, 康健1, 袁国1( ), 邸洪双1 |
1 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 2 首钢股份迁安钢铁有限公司 迁安 064404 |
|
Crack Propagation Behavior during DWTT for X80 Pipeline Steel Processed via Ultra-fast Cooling Technique |
Jinhua ZHAO1, Xueqiang WANG1,2, Jian KANG1, Guo YUAN1( ), Hongshuang DI1 |
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2 Shougang Qian'an Iron&Steel Co., Ltd, Qian'an 064404, China |
引用本文:
赵金华, 王学强, 康健, 袁国, 邸洪双. 超快冷工艺下X80管线钢的DWTT裂纹扩展行为[J]. 材料研究学报, 2017, 31(10): 728-736.
Jinhua ZHAO,
Xueqiang WANG,
Jian KANG,
Guo YUAN,
Hongshuang DI.
Crack Propagation Behavior during DWTT for X80 Pipeline Steel Processed via Ultra-fast Cooling Technique[J]. Chinese Journal of Materials Research, 2017, 31(10): 728-736.
[1] | N. Nozaki, K. Bessyo, Y. Sumitomo, et al.Drop weight tear test (DWTT) on the high toughness linepipe steel[J]. Sumitomo Search, 1981, 26: 76 | [2] | S.Y. Shin, B. Hwang, S. Lee, et al.Effects of notch shape and specimen thickness on drop-weight tear test properties of API X70 and X80 line-pipe steels[J]. Metall. Mater. Trans. A, 2007, 38A(3): 537 | [3] | S. Hong, S.Y. Shin, S. Lee, et al.Effects of Specimen Thickness and Notch Shape on Fracture Modes in the Drop Weight Tear Test of API X70 and X80 Linepipe Steels[J]. Metall. Mater. Trans. A, 2011, 42A(9): 2619 | [4] | Wang X X.Several hot issues of current research and development of line pipe[J]. Han Guan, 2014, 37(04): 5(王晓香,当前管线钢管研发的几个热点问题[J]. 焊管,2014, 37(04): 5) | [5] | Wang G D.Development of the new generation of TMCP technology[J]. China Metallurgy, 2012, 22(12): 1(王国栋, 新一代TMCP技术的发展[J]. 中国冶金, 2012, 22(12): 1) | [6] | B.Wang, Z. Wang, B. Wang, et al.The relationship between microstructural evolution and mechanical properties of Heavy Plate of Low-Mn Steel During Ultra Fast Cooling[J]. Metall. Mater. Trans. A, 2015, 46A: 2834 | [7] | J. Chen, M.Y. Lv, S. Tang, et al.Influence of cooling paths on microstructural characteristics and precipitation behaviors in a low carbon V-Ti microalloyed steel[J]. Mater. Sci. Eng. A, 2014, 594: 389 | [8] | Yuan G, Wang X Q, Kang J, et al.Development and application of ultra fast cooling technology for hot rolled strip in heavy guage pipeline steel[J]. China Metallurgy, 2014, 24: 212(袁国, 王学强, 康健, 王国栋, 热轧板带钢超快冷工艺在厚规格管线钢中的开发与应用[J]. 中国冶金, 2014, 24: 212) | [9] | Z. Yang.The fracture during drop-weight tear test of high performance pipeline steel and its abnormal fracture appearance[J]. Procedia Mater. Sci., 2014, 3: 1591 | [10] | B. Hwang, S. Lee, Y.M. Kim, et al.Analysis of abnormal fracture occurring during drop-weight tear test of high-toughness line-pipe steel[J]. Mater. Sci. Eng. A, 2004, 368(1-2): 18 | [11] | B. Hwang, S.Y. Shin, S. Lee, et al.Effect of microstructure on drop weight tear properties and inverse fracture occurring in hammer impacted region of high toughness X70 pipeline steels[J]. Mater. Sci. Tech-lond, 2008, 24(8): 945 | [12] | T. Tagawa, S. Igi, S. Kawaguchi, et al.Fractography of burst-tested linepipe[J]. INT J PRES VES PIP, 2012, 89: 33 | [13] | B. Strnadel, P. Ferfecki, P. ?idlík. Statistical characteristics of fracture surfaces in high-strength steel drop weight tear test specimens [J]. Eng Fract Mech, 2013, 112-113: 1 | [14] | I.A. Yakubtsov, P. Poruks, J.D. Boyd.Microstructure and mechanical properties of bainitic low carbon high strength plate steels[J]. Mater. Sci. Eng. A, 2008, 480(1-2): 109 | [15] | N. Isasti, D. Jorge-Badiola, M.L. Taheri, et al.Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification[J]. Metall. Mater. Trans. A, 2013, 44A(8): 3552 | [16] | B.Gardiola, C.Esling, M.Humbert, et al.EBSD study of the gamma to alpha phase transformation in an CSP-HSLA steel[J]. Adv. Eng. Mater., 2003, 5: 583 | [17] | S. Zhang, S. Morito, Y. I. Komizo.Variant selection of low carbon high alloy steel in an austenite grain during martensite transformation[J]. ISIJ Int, 2012, 52(3): 510 | [18] | D. A. Curry, J. F. Knott.Effect of microstructure on cleavage fracture stress in steel[J]. Met. Sci, 1979, 13: 341 | [19] | L. Lan, C. Qiu, D. Zhao, et al.Analysis of martensite-austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel[J]. J. Mater. Sci., 2012, 47: 4732 | [20] | S. Tang, Z.Y. Liu, G.D. Wang, et al.Microstructural evolution and mechanical properties of high strength microalloyed steels: Ultra fast cooling (UFC) versus accelerated cooling (ACC)[J]. Mater. Sci. Eng. A, 2013, 580: 257 | [21] | S.Y. Han, S.Y. Shin, S. Lee, et al.Effects of cooling conditions on tensile and charpy impact properties of API X80 linepipe steels[J]. Metall. Mater. Trans. A, 2010, 41A(2): 329 | [22] | T. Furuhara, N.Takayama, G.Miyamoto. Key Factors in Grain Refinement of Martensite and Bainite [J]. Mater. Sci. Forum, 2010, 638-642: 3044 | [23] | Miao C L, Shang C J, Mani Subramanian.Effect of ausforming and cooling rate on the distribution of high angle boundaries in low carbon bainitic structure[J]. J. Univ. Sci. Technol. B, 2012, 34(3): 289(缪成亮, 尚成嘉, M. Subramanian, 奥氏体变形及冷却速率对低碳贝氏体组织中大角晶界分布的影响[J]. 北京科技大学学报, 2012, 34(3): 289) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|