Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (10): 728-736    DOI: 10.11901/1005.3093.2016.055
  研究论文 本期目录 | 过刊浏览 |
超快冷工艺下X80管线钢的DWTT裂纹扩展行为
赵金华1, 王学强1,2, 康健1, 袁国1(), 邸洪双1
1 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
2 首钢股份迁安钢铁有限公司 迁安 064404
Crack Propagation Behavior during DWTT for X80 Pipeline Steel Processed via Ultra-fast Cooling Technique
Jinhua ZHAO1, Xueqiang WANG1,2, Jian KANG1, Guo YUAN1(), Hongshuang DI1
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2 Shougang Qian'an Iron&Steel Co., Ltd, Qian'an 064404, China
引用本文:

赵金华, 王学强, 康健, 袁国, 邸洪双. 超快冷工艺下X80管线钢的DWTT裂纹扩展行为[J]. 材料研究学报, 2017, 31(10): 728-736.
Jinhua ZHAO, Xueqiang WANG, Jian KANG, Guo YUAN, Hongshuang DI. Crack Propagation Behavior during DWTT for X80 Pipeline Steel Processed via Ultra-fast Cooling Technique[J]. Chinese Journal of Materials Research, 2017, 31(10): 728-736.

全文: PDF(1698 KB)   HTML
摘要: 

用OM、SEM以及EBSD技术研究了超快冷工艺制备的18.4 mm X80管线钢的微观组织及晶体学取向,用SEM观察和分析了DWTT断口的表面形貌和裂纹扩展行为,并讨论了超快冷改善管线钢止裂性能的作用机制。结果表明,用超快冷工艺制备的X80管线钢的组织为AF+CB+M/A岛,其中AF组织大约占83%,CB大约占17%,组织的有效晶粒尺寸大约为3.5 μm,大角晶界百分比大约为40.9%;在DWTT断裂过程中,实验钢中较大比例的AF和细小M/A岛减小了有效晶粒尺寸,提高了材料的止裂性能。超快冷提高管线钢止裂性能作用机制为:超快冷促进了AF形成,提高了细小弥散分布的M/A岛含量,弱化了AF相变过程中变体的选择,进而降低了有效晶粒尺寸,提高了大角晶界密度,改善了材料的止裂性能。

关键词 材料的组织、结构、缺陷与性能超快冷工艺AF相变X80管线钢止裂机制    
Abstract

The microstructure and crystallographic features of X80 pipeline steel of 18.4 mm in thickness, which was prepared by ultra-fast cooling (UFC) technique, were characterized by means of optical microscope, electron scanning microscopy, and EBSD technique. The performance of the steel by drop weight tear test (DWTT) was investigated in terms of the crack propagation and the morphology of fractured surfaces, while the mechanism related with the crack arresting ability of the steel resulted from UFC treatment was revealed . The results show that the microstructure of the steel is primarily composed of AF, CB, and M/A island, and the area fractions of AF and CB are ~83%, and ~17%, respectively. The effective grain size is ~3.5 μm, and the fraction of high-angle boundary is ~40.9%. The steel with higher fractions of AF and small-sized M/A island possesses smaller effective grain size, which is beneficial to the crack arresting ability of the steel. The mechanisms related to the enhancement of the crack arresting property may be ascribed to that the UFC promots the formation of AF, and increases the amount of small-sized M/A island by increasing cooling rate. Additionally, the variant selection during bainite transformation is weakened by UFC. Thus, the effective grain size is decreased, and the density of high-angle boundary is increased.

Key wordsmicrostructure    structure    defects and properties    ultra-fast cooling    AF transformation    X80 pipeline steel    crack arresting mechanism
收稿日期: 2016-01-13     
ZTFLH:  TG142  
基金资助:国家科技支撑计划(2012BAF04B01),国家自然科学基金(51504063)
作者简介:

作者简介 赵金华,男,1988年生,博士生

Element C Si Mn P S Nb+V+Ti Cr+Mo
Content 0.052 0.204 1.80 0.01 0.001 ≤0.13 ≤0.52
表1  实验钢合金成分 (质量分数,%)
图1  DWTT冲击试样的示意图
图2  裂纹扩展观察面的示意图
图3  实验钢厚度1/2处的光学组织和表面形貌
图4  实验钢的取向成像图、晶界勾勒图、晶界取向差分布图以及沿1#与2#线方向取向差变化图
图5  不同AF之间的晶体学取向关系:取向成像图和{001}极图
No. Orientation Rotational operation Variants
1 {203}[-4-13] - -
2 {113}[4-2-1] [-122],53.8° V17
3 {013}[-23-1] [-623],44.2° V18
4 {112}[-631] [-2-21],52.5° V10
5 {113}[8-3-2] [-133],52.9° V17
6 {325}[-431] [-3-13],56.3° V17
7 {115}[7-2-1] [-1-6-5],53.9° V9
8 {001}[-410] [-312],42.3° V18
表2  图5a中不同晶粒晶体学取向关系
Tensile testing results 30° charpy impact absorbed energy (-20℃)/J 30° DWTT (-15℃)/%
Rt0.5/MPa Rm/MPa Elongation/%, A50 Yield ratio 1# 2# 3# Average 1# 2# Average
Studied steel 570 694 27.9 0.82 426 336 422 395 100 100 100
ASTM A370 555~690 625~825 ≥18 ≤0.93 Single ≥180,Average ≥240 Single ≥70,Average ≥85
表3  实验钢力学性能
图6  实验钢DWTT宏观断口
图7  不同位置处DWTT冲击残样表面形貌特征:(a)-(d)分别对应P1-P4观察位置
图8  DWTT断裂过程裂纹起裂及过渡阶段裂纹扩展路径
图9  裂纹稳定扩展阶段扩展路径
[1] N. Nozaki, K. Bessyo, Y. Sumitomo, et al.Drop weight tear test (DWTT) on the high toughness linepipe steel[J]. Sumitomo Search, 1981, 26: 76
[2] S.Y. Shin, B. Hwang, S. Lee, et al.Effects of notch shape and specimen thickness on drop-weight tear test properties of API X70 and X80 line-pipe steels[J]. Metall. Mater. Trans. A, 2007, 38A(3): 537
[3] S. Hong, S.Y. Shin, S. Lee, et al.Effects of Specimen Thickness and Notch Shape on Fracture Modes in the Drop Weight Tear Test of API X70 and X80 Linepipe Steels[J]. Metall. Mater. Trans. A, 2011, 42A(9): 2619
[4] Wang X X.Several hot issues of current research and development of line pipe[J]. Han Guan, 2014, 37(04): 5(王晓香,当前管线钢管研发的几个热点问题[J]. 焊管,2014, 37(04): 5)
[5] Wang G D.Development of the new generation of TMCP technology[J]. China Metallurgy, 2012, 22(12): 1(王国栋, 新一代TMCP技术的发展[J]. 中国冶金, 2012, 22(12): 1)
[6] B.Wang, Z. Wang, B. Wang, et al.The relationship between microstructural evolution and mechanical properties of Heavy Plate of Low-Mn Steel During Ultra Fast Cooling[J]. Metall. Mater. Trans. A, 2015, 46A: 2834
[7] J. Chen, M.Y. Lv, S. Tang, et al.Influence of cooling paths on microstructural characteristics and precipitation behaviors in a low carbon V-Ti microalloyed steel[J]. Mater. Sci. Eng. A, 2014, 594: 389
[8] Yuan G, Wang X Q, Kang J, et al.Development and application of ultra fast cooling technology for hot rolled strip in heavy guage pipeline steel[J]. China Metallurgy, 2014, 24: 212(袁国, 王学强, 康健, 王国栋, 热轧板带钢超快冷工艺在厚规格管线钢中的开发与应用[J]. 中国冶金, 2014, 24: 212)
[9] Z. Yang.The fracture during drop-weight tear test of high performance pipeline steel and its abnormal fracture appearance[J]. Procedia Mater. Sci., 2014, 3: 1591
[10] B. Hwang, S. Lee, Y.M. Kim, et al.Analysis of abnormal fracture occurring during drop-weight tear test of high-toughness line-pipe steel[J]. Mater. Sci. Eng. A, 2004, 368(1-2): 18
[11] B. Hwang, S.Y. Shin, S. Lee, et al.Effect of microstructure on drop weight tear properties and inverse fracture occurring in hammer impacted region of high toughness X70 pipeline steels[J]. Mater. Sci. Tech-lond, 2008, 24(8): 945
[12] T. Tagawa, S. Igi, S. Kawaguchi, et al.Fractography of burst-tested linepipe[J]. INT J PRES VES PIP, 2012, 89: 33
[13] B. Strnadel, P. Ferfecki, P. ?idlík. Statistical characteristics of fracture surfaces in high-strength steel drop weight tear test specimens [J]. Eng Fract Mech, 2013, 112-113: 1
[14] I.A. Yakubtsov, P. Poruks, J.D. Boyd.Microstructure and mechanical properties of bainitic low carbon high strength plate steels[J]. Mater. Sci. Eng. A, 2008, 480(1-2): 109
[15] N. Isasti, D. Jorge-Badiola, M.L. Taheri, et al.Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification[J]. Metall. Mater. Trans. A, 2013, 44A(8): 3552
[16] B.Gardiola, C.Esling, M.Humbert, et al.EBSD study of the gamma to alpha phase transformation in an CSP-HSLA steel[J]. Adv. Eng. Mater., 2003, 5: 583
[17] S. Zhang, S. Morito, Y. I. Komizo.Variant selection of low carbon high alloy steel in an austenite grain during martensite transformation[J]. ISIJ Int, 2012, 52(3): 510
[18] D. A. Curry, J. F. Knott.Effect of microstructure on cleavage fracture stress in steel[J]. Met. Sci, 1979, 13: 341
[19] L. Lan, C. Qiu, D. Zhao, et al.Analysis of martensite-austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel[J]. J. Mater. Sci., 2012, 47: 4732
[20] S. Tang, Z.Y. Liu, G.D. Wang, et al.Microstructural evolution and mechanical properties of high strength microalloyed steels: Ultra fast cooling (UFC) versus accelerated cooling (ACC)[J]. Mater. Sci. Eng. A, 2013, 580: 257
[21] S.Y. Han, S.Y. Shin, S. Lee, et al.Effects of cooling conditions on tensile and charpy impact properties of API X80 linepipe steels[J]. Metall. Mater. Trans. A, 2010, 41A(2): 329
[22] T. Furuhara, N.Takayama, G.Miyamoto. Key Factors in Grain Refinement of Martensite and Bainite [J]. Mater. Sci. Forum, 2010, 638-642: 3044
[23] Miao C L, Shang C J, Mani Subramanian.Effect of ausforming and cooling rate on the distribution of high angle boundaries in low carbon bainitic structure[J]. J. Univ. Sci. Technol. B, 2012, 34(3): 289(缪成亮, 尚成嘉, M. Subramanian, 奥氏体变形及冷却速率对低碳贝氏体组织中大角晶界分布的影响[J]. 北京科技大学学报, 2012, 34(3): 289)
[1] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[2] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[3] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[4] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[5] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[6] 齐恺力 胡德江 高崇 刘峰 庞建超 邵琛玮 杨梦起 李守新 张哲峰. 不同回火温度低合金钢缺口拉伸性能预测[J]. 材料研究学报, 0, (): 0-0.
[7] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[8] 李桥, 牛犇, 张瑞谦, 刘会群, 林国强, 王清. Ta/ZrFe-Cr-Al-Mo-Nb合金温轧板材高温组织稳定性的影响[J]. 材料研究学报, 2023, 37(6): 423-431.
[9] 杨宝磊, 刘廷光, 苏香林, 范宇, 邱亮, 陆永浩. 热老化对316LN力学性能和晶间腐蚀敏感性的影响[J]. 材料研究学报, 2023, 37(5): 381-390.
[10] 夏博, 王斌, 张鹏, 李小武, 张哲峰. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352.
[11] 刘涛, 尹志强, 雷经发, 葛永胜, 孙虹. 选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为[J]. 材料研究学报, 2023, 37(5): 391-400.
[12] 邓朝辉 陈云 巩桐兆 徐闯 陈星秋 傅排先 李殿中. 高纯稀土对M50钢液析碳化物的影响[J]. 材料研究学报, 0, (): 0-0.
[13] 冯枫 杨冰 陈东东 王明猛 肖守讷 阳光武 朱涛. 缺陷对激光选区熔化316L不锈钢疲劳性能的影响[J]. 材料研究学报, 0, (): 0-0.
[14] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.
[15] 徐阳, 李彦睿, 刘宝胜, 刘雯, 张少华, 卫英慧. 无取向硅钢中第二相的析出行为[J]. 材料研究学报, 2023, 37(1): 47-54.