Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (3): 204-210    DOI: 10.11901/1005.3093.2013.603
  本期目录 | 过刊浏览 |
Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)非晶合金的结晶动力学*
汪汝武1,3(),刘静1,2,甘章华1,曾春3,张凤泉3
1. 武汉科技大学材料与冶金学院 武汉 430081
2. 北京科技大学新金属材料国家重点实验室 北京 100083
3. 国家硅钢工程技术研究中心 武汉 430080
Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)
Ruwu WANG1,3,**(),Jing LIU1,2,Zhanghua GAN1,Chun ZENG3,Fengquan ZHANG3
1. College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081
2. State Key Laboratory for Advanced Metals and Materials, Beijing University of Science and Technology,
Beijing 100083
3. National Engineering Research Center for Silicon Steel, Wuhan 430080
引用本文:

汪汝武,刘静,甘章华,曾春,张凤泉. Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)非晶合金的结晶动力学*[J]. 材料研究学报, 2014, 28(3): 204-210.
Ruwu WANG, Jing LIU, Zhanghua GAN, Chun ZENG, Fengquan ZHANG. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)[J]. Chinese Journal of Materials Research, 2014, 28(3): 204-210.

全文: PDF(1815 KB)   HTML
摘要: 

用标准单辊甩带技术在大气环境下制备Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)非晶条带, 分别在470℃、510℃、550℃和590℃对非晶条带进行真空等温退火1 h后, 在非晶基体中形成了纳米晶相。用X射线衍射(XRD), 透射电镜(TEM)和差示扫描量热法(DSC)测量研究了快淬态和热处理后样品的结构和结晶动力学。基于差热分析的数据, 使用Kissinger, Ozawa和Augis-Bennett模型计算了非晶条带的结晶激活能, 利用Johnson-Mehl-Avrami(JMA)方程计算了非晶条带初始结晶的局域Avrami因子n。局域Avrami因子n随晶化体积分数α的显著变化说明, 非晶条带非等温初始结晶的机理在不同的晶化阶段是不同的。晶化初期的机理是扩散控制的三维形核和晶粒生长的整体晶化, 形核速率逐渐减小; 晶化中后期为一维形核和生长的表面晶化过程, 形核速率近似为零。基于XRD和TEM测量结果, 分别在510℃、550℃和590℃真空等温退火1 h后, 在Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)非晶条带中析出的α-Fe (Si, Ge)相的平均晶粒尺寸D小于15 nm。

关键词 材料科学基础学科Fe73.5Si13.5-xGexB9Cu1Nb3结构结晶动力学    
Abstract

Amorphous ribbons Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6) were prepared by a normal single copper wheel melt spinning technique in atmosphere, which then were isothermally annealed at 470℃、510℃、550℃ and 590℃ respectively for 1 h in a vacuum furnace. The microstructure and crystallization kinetics of the ribbons were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimeter (DSC) measurements. While the crystallization activation energies of amorphous ribbons were calculated by using Kissinger, Ozawa and Augis-Bennett models based on differential thermal analysis data. The local Avrami exponent n for primary crystallization was calculated by using Johnson-Mehl-Avrami (JMA) equation. The significant variation of local Avrami exponent n with crystallization volume fraction α demonstrated that the primary crystallization kinetics of amorphous ribbons varied at different stages. In the initial stage, the crystallization mechanism was diffusion controlled bulk crystallization with three dimensional nucleation and grain growth, while the nucleation rate deceased with time. In the following stage, it was surface crystallization with one dimensional nucleation and grain growth, while the nucleation rate was near zero. The average sizes D of α-Fe (Si, Ge) grains for the samples annealed at 510℃、550℃ and 590℃for 1 h in a vacuum furnace were less than 15 nm as confirmed both by XRD and TEM measurements.

Key wordsfoundational discipline in materials science    Fe73.5Si13.5-xGexB9Cu1Nb3    microstructure    crystallization kinetics
收稿日期: 2013-08-16     
基金资助:* 北京科技大学新金属材料国家重点实验室开放基金2011-ZD03, 湖北省教育厅D20111103资助项目。
作者简介:

本文联系人: 汪汝武

图1  Fe73.5Si13.5-xGexB9Cu1Nb3 (x=3, 6)淬态样品的XRD图谱
图2  Fe73.5Si10.5Ge3B9Cu1Nb3淬态样品在不同加热速率下的DSC曲线, 加热速率从5–20℃/min
图3  Fe73.5Si7.5Ge6B9Cu1Nb3淬态样品在不同加热速率下的DSC曲线, 加热速率从5–20℃/min
x b/(℃/min) Tx1/℃ Tp1/℃ Tx2/℃ Tp2/℃ ΔT/℃
3 5 492 519 620 642 123
3 10 500 528 631 655 127
3 15 506 535 638 662 127
3 20 508 539 641 666 127
6 5 470 498 621 632 134
6 10 475 509 628 645 136
6 15 479 515 633 653 138
6 20 482 518 637 658 140
表1  据DSC曲线确定的Fe73.5Si13.5-xGexB9Cu1Nb3 (x=3, 6)非晶合金的晶化开始温度和晶化峰值温度(Tx1, Tp1和Tx2, Tp2)和ΔT=Tp2-Tp1
图4  Fe73.5Si13.5-xGexB9Cu1Nb3 (x=3, 6)淬态样品的Kissinger拟合图, R1表示一次晶化, R2表示二次晶化
图5  Fe73.5Si13.5-xGexB9Cu1Nb3 (x=3, 6)淬态样品的Ozawa拟合图, R1表示一次晶化, R2表示二次晶化
图6  Fe73.5Si13.5-xGexB9Cu1Nb3 (x=3, 6)淬态样品的Augis-Bennett拟合图, R1表示一次晶化, R2表示二次晶化
x Model R1 (kJ/mol) R2 (kJ/mol)
3 Kissinger 352 391
3 Ozawa 366 407
3 Augis-Bennett 356 396
6 Kissinger 331 356
6 Ozawa 344 371
6 Augis-Bennett 334 360
表2  Fe73.5Si13.5-xGexB9Cu1Nb3 (x=3, 6)非晶合金的晶化表观激活能, R1代表一次晶化, R2代表二次晶化
图7  Fe73.5Si13.5-xGexB9Cu1Nb3 (x=3, 6)淬态样品一次晶化峰的局域Avrami因子n随晶化分数α的变化关系, 加热速率为10℃/min
图8  Fe73.5Si10.5Ge3B9Cu1Nb3淬态样品在不同温度真空等温退火1 h后的XRD图谱
图9  Fe73.5Si7.5Ge6B9Cu1Nb3淬态样品在不同温度真空等温退火1 h后的XRD图谱
图10  Fe73.5Si7.5Ge6B9Cu1Nb3的TEM图, 淬态样品以及分别在470℃, 510℃, 550℃, 590℃保温1 h样品, 图中的插图为SAED图
1 Y. Yoshizawa, S. Oguma, K. Yamauchi,New Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys., 64, 6044(1988)
2 G. Herzer,Magnetization process in nanocrystalline ferromagnets, J. Mater. Sci. Eng. A, 133, 1(1991)
3 G. Herzer,Grain structure and magnetism of nanocrystalline ferromagnets, J. IEEE Trans. Magn., 25, 3327(1989)
4 N. Chau, N. X. Chien, N. Q. Hoa, P. Q. Niem, N. D. Tho, V. V. Hiep,Investigation of nanocomposite materials with ultrasoft and high performance hard magnetic properties, J. Magn. Magn. Mater., 282, 174(2004)
5 N. Chau, N. Q. Hoa, N. D. The, L. V. Vu,The effect of Zn, Ag and Au substitution for Cu in Finemet on the crystallization and magnetic properties, J. Magn. Magn. Mater., 303, e415(2006)
6 D. Muraca, J. Moya, V. J. Cremaschi, H. R. Sirkin,Amorphous and nanocrystalline fraction calculus for the Fe73.5Si3.5Ge10Nb3B9Cu1 alloy, Physica B, 398, 325(2007)
7 D. Muraca, V. Cremaschi, J. Moya, H. Sirkin,FINEMET type alloy without Si: Structure and magnetic properties, J. Magn. Magn. Mater., 320, 1639(2008)
8 D. Muraca, V. Cremaschi, J. Moya, H. Sirkin, Structure magnetic correlation of Finemet alloys with Ge addition, J. Magn. Magn. Mater., 320, 810(2008)
9 J. A. Moya, V. J. Cremaschi, H. Sirkin,From Fe3Si towards Fe3Ge in Finemet-like nanocrystalline allys: Mossbauer spectroscopy, Physica B, 389, 159(2007)
10 J. A. Moya,Nanocrystals and amorphous matrix phase studies of Finemet-like alloys containing Ge, J. Magn. Magn. Mater., 322, 1748(2010)
11 V. Cremaschi, G. Sanchez, H. Sirkin,Magnetic properties and structure evolution of FINEMET alloys with Ge addition, Physica B, 354, 213(2004)
12 W. A. Johnson, R. F. Mehl,Reaction kinetics in processes of nucleation and growth, Trans. AIME, 135, 416(1939)
13 V. Cremaschi, A. Saad, M. J. Ramos, H. Sirkin,Magnetic and structural characterization of Finemet type alloys with addition of Ge and Co, Journal of Alloys and Compounds, 369, 101(2004)
14 J. S. Blazquez, S. Roth, A. Conde,Effect of partial substitution of Ge for B on the high temperature response of soft magnetic nanocrystalline alloys, Journal of Alloys and Compounds, 395, 313(2005)
15 LI Yang,LU Wei, YAN Biao, Crystallization behavior of Finemet amorphous alloy, Journal of Materials Science and Engineering, 24(1), 132(2006)
15 (黎 阳, 陆 伟, 严 彪, FINEMET合金晶化行为的DSC研究, 材料科学与工程学报, 24(1), 132(2006))
16 H. E. Kissinger,Reaction kinetics in differential thermal analysis, Anal. Chem., 29, 1702(1957)
17 T. Ozawa,A new method of analyzing thermagravimetric data, Bull. Chem. Soc. (Japan), 35, 1881(1965)
18 J. A. Augis, J. E. J. Bennett,Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method, Them. Anal., 13, 283(1978)
19 W. Lu, B. Yan, W. H. Huang, Complex primary crystallization kinetics of amorphous Finemet alloy, J. Non-Cryst. Solids, 351, 3320(2005)
20 M. H. Phan, H. X. Peng, M. R. Wiscom,Effect of annealing on the microstructure and magnetic properties of Fe-based nanocomposite materials, Composites, Part A, 37, 191(2006)
21 J. M. Christian,The Theory of Transformations in Metals and Alloys, 2nd Ed., New York: Pergamon, (1975)
22 G. Ghosh, M. Chandrasekaran, L. Delaey,Isothermal crystallization kinetics of Ni24Zr76 and Ni24(Zr-X)76 amorphous alloys, Acta Metall. Mater., 39, 925(1991)
23 N. X. Sun, K. Zhang, X. H. Zhang, X. D. Liu, K. Lu,Nanocrystallization of amorphous Fe33Zr67 alloy, Nanostruct. Mater., 7, 637(1996)
24 K. Lu, X. D. Liu, F. H. Yuan,Synthesis of the NiZr2 intermetallic compound nanophase materials, Physica B, 217, 153(1996)
25 N. X. Sun, X. D. Liu, K. Lu,An explaination to the anomalous Avrami exponent, Scr. Mater., 34, 1201(1996)
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[3] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[4] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[5] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[6] 季洪梅, 王絮, 李小武. 贝壳珍珠质及交叉叠片结构体外类骨磷灰石生长的对比研究[J]. 材料研究学报, 2023, 37(4): 241-247.
[7] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘欢, 李幸福, 杨易, 李聪, 付正容, 柏云花, 张正洪, 朱心昆. 梯度结构铜铝合金的室温加工硬化行为[J]. 材料研究学报, 2023, 37(2): 95-101.
[10] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[11] 韩颖, 李思达, 曹云东, 李述军, 陆艳君, 孙宝玉. 形状因子对微观定向结构Cu-W复合材料触头的力学和电学性能的影响[J]. 材料研究学报, 2022, 36(8): 571-578.
[12] 陈晶晶, 邱小林, 李柯, 袁军军, 周丹, 刘亦薇. 磨粒刮擦诱导单晶镍微结构演化与塑性去除行为的纳观分析[J]. 材料研究学报, 2022, 36(7): 511-518.
[13] 王艳坤, 王宇, 纪伟, 王智慧, 彭翔飞, 呼宇雄, 刘斌, 徐宏, 白培康. 碳纤维/铝复层材料的组织和力学性能[J]. 材料研究学报, 2022, 36(7): 536-544.
[14] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[15] 张益铭, 赵子彦, 牟娟. 添加Nb元素对TiZr基非晶复合材料性能的影响[J]. 材料研究学报, 2022, 36(6): 401-408.