Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (2): 183-188    
  研究报告 本期目录 | 过刊浏览 |
低碳钢表面Fe-Ni合金层的制备及耐腐蚀性能
盛敏奇1, 2 许继芳1, 2 万康1 吕臣凯1
1. 苏州大学 沙钢钢铁学院 苏州 215021
2. 上海大学 上海市现代冶金与材料制备重点实验室 上海 200072
Preparation and Corrosion Resistance Performance of Fe-Ni Alloy Coating on Surface of Mild Steel
SHENG Minqi1, 2 XU Jifang1, 2* WAN Kang1 LV Chenkai1
1. Shagang School of Iron and Steel, Soochow University, Suzhou, Jiangsu 215021
2. Shanghai Key Laboratory of Modern Metallurgy and Material Processing, Shanghai University, Shanghai 200072
引用本文:

盛敏奇 许继芳 万康, 吕臣凯. 低碳钢表面Fe-Ni合金层的制备及耐腐蚀性能[J]. 材料研究学报, 2013, 27(2): 183-188.
. Preparation and Corrosion Resistance Performance of Fe-Ni Alloy Coating on Surface of Mild Steel[J]. Chinese Journal of Materials Research, 2013, 27(2): 183-188.

全文: PDF(3594 KB)  
摘要: 以纳米NiO粉体为Ni源, 通过热扩渗在低碳钢表面制备Fe-Ni合金层, 研究了处理温度对Fe-Ni合金层表面状态、结构和耐腐蚀性能的影响。结果表明: 处理温度高于800 ℃可在低碳钢表面形成厚度20—25 μm、表面Ni含量(原子分数)高于25%、与低碳钢基底形成了冶金结合的Fe-Ni合金层, 处理温度不低于900 ℃时Fe-Ni合金层为单一α-Fe固溶体相。随着处理温度的提高, Fe-Ni合金层在质量分数为3.5%NaCl溶液中的耐腐蚀性能提高。在3.5%的NaCl溶液中Fe-Ni合金层的Ecorr均较低碳钢的Ecorr发生了正移, Fe-Ni合金层的icorr均较低碳钢的icorr有不同程度的降低, Fe-Ni合金层的电化学阻抗均大于低碳钢的电化学阻抗。
关键词 材料失效与保护低碳钢Fe-Ni合金层热扩渗电化学腐蚀    
Abstract: Fe-Ni alloy coatings were prepared on the surface of mild steel by means of thermal diffusion, using nano-NiO powder as the source of Ni element. The effects of treatment temperature on surface state, structure and corrosion resistance of the Fe-Ni alloy coatings were investigated. The result shows that: when the treatment temperature was higher than 800 ℃, 20-25 μm Fe-Ni alloy coatings formed and Ni content (atomic fraction) were higher than 25% on the surface, the coating and the substrate was integrated to metallurgy structure. When the treatment temperature was higher than 900 ℃, Fe-Ni alloy structure became single α-Fe solid solution phase. The corrosion resistance of Fe-Ni alloy coatings increased with the treatment temperature from 700 to 1000 ℃. In contrast with mild steel in 3.5%NaCl solution, the Fe-Ni alloy coatings have more positive corrosion potential, much lower corrosion current density. The electrochemical impedance of Fe-Ni alloy coatings was also bigger than that of mild steel in 3.5%NaCl solution.
Key wordsmaterials failure and protection    mild steel    Fe-Ni alloy coating    thermal diffusion    electrochemical    corrosion
    
ZTFLH:  TB304  
1 Li Zhuang, Wu Di, Lv Wei, Effects of rolling and cooling conditions on microstructure and mechanical properties of low carbon cold heading steel, Journal of Iron and Steel Research, International, 19(11), 64(2012)
2 LIU Jing, LU Shouli, Relationship between microstructure and properties in low carbon steel, Journal of University of Science and Technology Beijing, 24(2), 208(2002)
(刘 靖, 鹿守理, 低碳钢组织与力学性能关系, 北京科技大学学报, 24(2), 208(2002))
3 Yang Kun, Gou Huiyang, Zhang Bo, Huang Rui, Li Hui, Lu Manman, Zhang Xiangyi, Microstructures and fracture features of cold-rolled low carbon steel sheet after annealing and mechanical stress concurrently loaded, Materials Science and Engineering: A, 502(1-2), 126(2009)
4 Songjeng Huang, V. I. Semenov, L. Sh. Shuster, Pochou Lin, Tribological properties of the low-carbon steels with different micro-structure processed by heat treatment and severe plastic deformation, Wear, 271(5-6), 705(2011)
5 Z. B. Wang, J. Lu, K. Lu, Wear and corrosion properties of a low carbon steel processed by means of SMAT followed by lower temperature chromizing treatment, Surface and Coatings Technology, 201(6), 2796(2006)
6 C. Chen, D. Y. Li, C. J. Shang, Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive wear, Electrochimica Acta, 55(1), 118(2009)
7 L’ubomír Gajdo?, Martin ?perl, Jan Siegl, Apparent fracture toughness of low-carbon steel CSN 411353 as related to stress corrosion cracks, Materials & Design, 32(8-9), 4348(2011)
8 ZHONG Li, SUN Yanpeng, Research application and progress about thermal diffusion process, Material & Heat Treatmen, 36(22), 81, 94(2007)
(钟 厉, 孙艳鹏, 热扩渗工艺的研究应用及进展, 材料热处理, 36(22), 81, 94(2007))
9 Xiujuan Liu, Huachang Wang, Dongwei Li, Yanxi Wu, Study on kinetics of carbide coating growth by thermal diffusion process, Surface and Coatings Technology, 201(6), 2414(2006)
10 M. Pietrzyk, M. Kryzhanovski, S. Okara, V. Parchomenko, Thermal-diffusion finite element analysis of nitriding process for arc plasma surface hardening of steel, Journal of Materials Processing Technology, 56(1-4), 412(1996)
11 KUI Gongyi, Applications of surface strengthening techniques in H13 steel, Surface Technology, 36(6), 77(2007)
(隗功益, 表面改性技术在H13钢上的应用, 表面技术, 36(6), 77(2007))
12 K. Genel, I. Ozbek, C. Bindal, Kinetics of boriding of AISIWI steel, Materials Science and Engineering: A, 347(1-2), 311(2003)
13 CHEN Zonghao, HAN Wenzheng, YU Yuanhong, WANG Hongwei, XIE Fengkuan, Solid zinc-aluminized technology of medium-carbon steel parts, Materials Protection, 36(4), 48(2003)
(陈宗浩, 韩文政, 遇元宏, 王洪伟, 谢凤宽, 中碳钢零件固体锌铝共渗技术研究, 材料保护, 36(4), 48(2003))
14 Chunhao Koo, Chingyuan Bai, Yijun Luo, The structure and high temperature corrosion behavior of pack aluminized coatings on superalloy IN-738LC, Materials Chemistry and Physics, 86(2-3), 258 (2004)
15 Naiming Lin, Faqin Xie, Huijun Yang, Wei Tian, Hefeng Wang, Bin Tang, Assessments on friction and wear behaviors of P110 steel and chromizing coating sliding against two counterparts under dry and wet conditions, Applied Surface Science, 258(11), 4960 (2012)
16 TAO Xiaoke, DONG Guixia, PENG Risheng, SUN Yongchang, Study on co-permeation of solid rare-earth element, boron and vanadium, Journal of The Chinese Rare Earth Society, 19(2), 178 (2001)
(陶小克, 董桂霞, 彭日升, 孙永昌, 固体法稀土硼钒共渗的研究, 中国稀土学报, 19(2), 178(2001))
17 Toshiyasu Nishimura, Hideki Katayama, Kazuhiko Noda, Toshiaki Kodama, Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments, Corrosion Science, 42(9), 1611(2000)
18 Yanlei Zhou, Jun Chen, Yang Xu, Zhenyu Liu, Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl- containing environment, Journal of Materials Science & Technology, 29(2), 168(2013)
[1] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[2] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[3] 蒋梦蕾, 代斌斌, 陈亮, 刘慧, 闵师领, 杨帆, 侯娟. 选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响[J]. 材料研究学报, 2023, 37(5): 353-361.
[4] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[5] 杨宝磊, 刘廷光, 苏香林, 范宇, 邱亮, 陆永浩. 热老化对316LN力学性能和晶间腐蚀敏感性的影响[J]. 材料研究学报, 2023, 37(5): 381-390.
[6] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[7] 陈杰, 李红英, 周文浩, 张青学, 汤伟, 刘丹. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响[J]. 材料研究学报, 2022, 36(8): 617-627.
[8] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[9] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[10] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[11] 蔡雨升, 韩洪智, 任德春, 吉海宾, 雷家峰. 化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响[J]. 材料研究学报, 2022, 36(6): 435-442.
[12] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[13] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[14] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[15] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.