Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (1): 13-17    
  研究论文 本期目录 | 过刊浏览 |
船体用钢板基底超疏水表面的制备和性能*
连峰 谭家政 张会臣
(大连海事大学交通运输装备与海洋工程学院 大连 116026)
Preparation and Properties of Super-hydrophobic Surface on Warship Steel
LIAN Feng TAN Jiazheng ZHANG Huichen**
(College of Transportation Equipment and Ocean Engineering, Dalian Maritime University, Dalian 116026)
引用本文:

连峰 谭家政 张会臣. 船体用钢板基底超疏水表面的制备和性能*[J]. 材料研究学报, 2013, 27(1): 13-17.
LIAN Feng TAN Jiazheng ZHANG Huichen**. Preparation and Properties of Super-hydrophobic Surface on Warship Steel[J]. Chinese Journal of Materials Research, 2013, 27(1): 13-17.

全文: PDF(5796 KB)  
摘要: 采用激光加工技术构建微米级的表面微结构, 将SiO2纳米粒子均匀分散在低表面能含氟聚合物中形成聚合物基纳米复合材料, 并将其涂覆在表面微结构上构建微纳双层仿生结构, 获得了超疏水船体钢板表面。用光学显微镜、扫描电镜和X射线光电子能谱等手段表征其形貌和表面元素, 用接触角测量仪测量了表面接触角。结果表明, 与具有单一的微米或纳米结构的表面相比较, 具有微纳双层结构的表面可以获得更大的接触角。接触角与纳米SiO2浓度有关, 浓度越高, 接触角越大。当SiO2的浓度为0.167 mol/L, 接触角可达168.2°。单一微米结构和纳米结构的表面符合Wenzel模型, 即使将表面竖直放置, 液滴仍不会滚落。微纳双层结构的表面符合Cassie模型, 具有大的接触角和小的滚动角, 且滚动角随SiO2浓度的增大而减小。当SiO2的浓度为0.167 mol/L, 滚动角仅为0.29°。
关键词 材料表面与界面超疏水微纳结构接触角钢板    
Abstract:ABSTRACT Laser modification was conducted to build micro-structure textures on the warship steel surface. Nano-SiO2 powders were dispersed in a low surface energy fluoropolymers to form a polymer-based nanocomposites, and coated on the textured surfaces to build the micro-nano bionic structure for the super- hydrophobic surface. The micrograph and elements were investigated by optical microscope, scanning electron microscopy and X-ray photoelectron spectroscopy. The contact angles and roll angles were measured. The results show that the surfaces of the micro-nano structure have bigger contact angle than that of those with a single micron or nano-structure surfaces. The contact angles increase with increasing SiO2 concentration. When the concentration of SiO2 is 0.167 mol/L, the contact angle is as high as 168.2°. Single micron and nano-structured surface accords with the Wenzel model. Even if the surface is placed vertically, the droplet does not roll. The surfaces of the micro-nano structure satisfy the Cassie model, and possess large contact angle and small roll angle. The roll angle decreases with increasing SiO2 concentration. When the concentration of SiO2 is 0.167 mol/L, the roll angle is only 0.29°.
    
ZTFLH:  O631  
1 Y.P.Papastamatiou, C.G.Meyer, Sharks as cleaners for reef fish, Coral Reefs., 26, 225(2007)
2 M.Scholle, A.Rund, N.Aksel, Drag reduction and improvement of material transport in creeping films, Arch Appl. Mech., 75, 93(2006)
3 Y.Zhang, X.Yu, Q.Zhou, F.Chen, K.Li, Fabrication of super-hydrophobic copper surface with ultra-low water roll angle, Appl. Surf. Sci., 256(6), 1883(2010)
4 X.Zhang, F.Shi, X.Yu, H.Liu, Y.Fu, Z.Q.Wang, L.Jiang, X.Y.Li, Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface, J. Am. Chem. Soc., 126, 3064(2004)
5 N.Zhao, F.Shi, Z.Q.Wang, X.Zhang, Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces, Langmuir, 21, 4713(2005)
6 X.Yu, Z.Q.Wang, Y.G.Jiang, F.Shi, X.Zhang, Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity, Adv. Mater, 17, 1289(2005)
7 F.Shi, Z.Q.Wang, X.Zhang, Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders, Adv. Mater, 17, 1005(2005)
8 WANG Jingming, WANG Chun, WANG Mingchao, JIANG Lei, Effects of the distribution of micropapillae with nanofolds on the adhesive property of artificial red rose petals, CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, 32(8), 1807(2011)
(王景明, 王 春, 王明超, 江 雷, 人造玫瑰花花瓣的微结构分布与水滴黏附性质的关系, 高等学校化学学报, 32(8), 1807(2011))
9 M.H.Jin, X.J.Feng, J.M.Xi, J.Zhai, K.Cho, L.Feng, L.Jiang, Super-hydrophobic PDMS surface with ultra-low adhesive force, Macromol Rapid Commun, 26, 1805(2005)
10 C.T.Hsieh, J.M.Chen, R.R.Kuo, T.S.Lin, C.F.Wu, Influence of surface roughness on water-and oil-repellent surface coated with nanoparticles, Applied Surface Science, 240, 318(2005)
11 SU Changhong, XIAO Yi, CUI Zhe, LIU Chengguo, WANG Qingjun, CHEN Qingmin, A simple way to fabricate multi-dimension bionic super-hydrophobic surface, Chinese Journal of Inorganic Chemistry, 22(5), 785(2006)
(粟常红, 肖 怡, 崔 喆, 刘承果, 王庆军, 陈庆民, 一种多尺度仿生超疏水表面制备, 无机化学学报, 22(5), 785(2006))
12 JI Jingou, YANG Bin, XIA Zhining, JIANG Xingliang, SHU Lichun, Preparation of super-hydrophobic and self-cleaning coating of nano-composite fluoropolyacrylate, Chinese Journal of Materials Research, 25(4), 422(2011)
(季金苟, 杨 斌, 夏之宁, 蒋兴良, 舒立春, 纳米复合氟改性丙烯酸树脂超疏水自清洁涂层的制备, 材料研究学报, 25(4), 422(2011))
13 HU Xiaojuan, LIU Lan, LUO Yuanfang, JIA Demin, CHENG Liang, HU Shengzhe, Preparation of superhydrophobic PMHS-SiO2 coatings by sol-gel method, Chinese Journal of Materials Research, 24(3), 266(2010)
(胡小娟, 刘 岚, 罗远芳, 贾德民, 程 梁, 胡盛哲, 溶胶-凝胶法制备超疏水PMHS- SiO2涂膜, 材料研究学报, 24(3), 266(2010))
14 R.Fürstner, W.Barthlott, C.Neinhuis, P.Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir, 21, 956(2005)
15 H.Juvaste, E.I.Iiskola, T.T.Pakkanen, Aminosilane as a coupling agent for cyclopentadienyl ligands on silica, Journal of Organometallic Chemistry, 587(1), 38(1999)
16 R.N.Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 988(1936)
17 A.B.D.Cassie, S.Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40, 546(1944)
18 H.Murase, K.Nanishi, H.Kogure, T.Fujibayashi, K.Tamura, N.Haruta, Interactions between heterogeneous surfaces of polymers and water, Appl. Polym. Sci., 54(13), 2051(1994)
19 Z.Yoshimitsu, A.Nakajima, T.Watanabe, K.Hashimoto, Effects of surface structure on the hydrophobicity and sliding behavior of water droplets, Langmuir, 18(15), 5818(2002)
20 YANG Changwei, HAO Pengfei, HE Feng, Effect of upper contact line on sliding behavior of water droplet on superhydrophobic surface, Chin. Sci. Bulletin, 54(4), 436(2009)
(杨常卫, 郝鹏飞, 何 枫, 微结构超疏水表面液滴的运动性质, 科学通报, 54(4), 436(2009))
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[5] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[7] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[9] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[10] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[11] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.