Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (4): 337-343    
  综述 本期目录 | 过刊浏览 |
超疏水表面抗结冰性能研究进展
冯杰, 卢津强, 秦兆倩
浙江工业大学材料科学与工程系 杭州 310014
Research Progress on Anti-icing Performance of Superhydrophobic Surfaces
FENG Jie,  LU Jinqiang, QIN Zhaoqian
Department of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014
引用本文:

冯杰 卢津强 秦兆倩. 超疏水表面抗结冰性能研究进展[J]. 材料研究学报, 2012, 26(4): 337-343.
, , . Research Progress on Anti-icing Performance of Superhydrophobic Surfaces[J]. Chin J Mater Res, 2012, 26(4): 337-343.

全文: PDF(1125 KB)  
摘要: 阐述了近期国内外对超疏水表面抗结冰的研究进展, 以期弄清这种特殊浸润性表面的抗结冰性能。发现必须根据超疏水表面的微结构类型判断其能否抗结冰, 而不能只依据接触角进行笼统的判断。有些超疏水表面, 其抗结冰能力随着结冰-融冰循环次数的增加而下降。在低温高湿条件下, 很多超疏水表面的抗结冰能力会因水蒸气在表面微纳结构的间隙内冷凝而恶化。因此, 设计机械强度高的超疏水表面(耐结冰--融冰循环)、或能使冷凝水滴在其上自迁移的新型超疏水表面、或者简单地在固体表面沉积一层光滑牢固的疏冰涂层, 或许是制备持久抗结冰表面的现实、可靠选择。
关键词 材料表面与界面 超疏水表面 综述 抗结冰 可靠性 持久性    
Abstract:The studies of ice accretion on superhydrophobic surfaces (SHS) in recent years were reviewed in this paper. The conclusion is that the detailed surface structure is very important in deciding whether SHS are really icephobic and judgment by contact angle alone is not sufficient. The ice-repellent properties of some SHS can deteriorate after icing/deicing cycles. The anti-icing efficiency of SHS can significantly lower in a humid atmosphere because water vapour condenses in the interspace between surface protrudes. Thus designing SHS with strong microstructure, or on which condensed water droplets could spontaneously move away, or simply depositing smooth coat with low ice adhesion strength, may be realistic and reliable selects in preparing anti-icing surfaces with long durability.
Key wordssurface and interface in the materials    superhydrophobic surface    reviews    anti-icing    reliability    durability
收稿日期: 2012-01-29     
ZTFLH: 

O482

 
基金资助:

国家自然科学基金51172206资助项目。

1 LI Wen, FANG Guoping, WANG Xiufeng, CUI Xiaosong, ZHOU Yichun, A method for manufacturing transmission power lines with anti-icing property, China Patent, CN101425347 (2008)

(李文, 方国平, 王秀锋, 崔晓松, 周益春, 一种防覆冰输电电缆及其生产方法, 中国发明专利, CN101425347 (2008))

2 DING Guipu, YANG Zhuoqing, WANG Yan, WANG Hong, YAO Jinyuan, A anti-icing and de-icing surface for aircraft and its production method, China Patent, CN101704410 A (2009)

(丁贵甫, 杨卓青, 王 艳, 汪  红, 姚锦元, 用于飞机防冰除冰的纳米超疏水表面及其制备, 中国发明专利, CN101704410 A (2009))

3 XU WenJi, SONG Jinlong, SUN Jing, DOU Qingle, Characteristics of ice and frost formation on superhydrophobic surfaces on aluminum substrates, Journal of refrigeration, 32(4), 9(2011)

(徐文骥, 宋金龙, 孙晶, 窦庆乐, 铝基体超疏水表面结冰结霜特性研究, 制冷学报,  32(4), 9(2011))

4 ZHANG Youfa, YU Xinquan, ZHOU Quanhui, LI Kangning, Fabrication and anti-icing performance of a superhydrophobic copper surface with low adhesion, Acta Phys.– Chim. Sin., 26(5), 1457(2010)

(张友法, 余新泉, 周荃卉, 李康宁, 超疏水低粘着铜表面制备及其防覆冰性能, 物理化学学报,  26(5), 1457(2010))

5 X.Zhang, F.Shi, J.Niu, Y.G.Jiang, Z.Q.Wang, Superhydrophobic surfaces: from structural control to functional application, J. Mater. Chem., 18, 621(2008)

6 K.S.Liu, X.Yao, L.Jiang, Recent developments in bioinspired special wettability, Chem. Soc. Rev., 39, 3240(2010)

7 X.Yao, Y.L.Song, L.Jiang, Applications of bio-inspired special wettable surfaces, Adv. Mater., 23, 719(2011)

8 B.Bhushan, Y.C.Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Prog. Mater. Sci., 56, 1(2011)

9 F.Wang, C.R.Li, Y.Z.Lv, Y.F.Du, A facile superhydrophobic surface for mitigating ice accretion. Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials (Harbin, China), A-34, 150(2009)

10 F.Wang, C.R.Li, Y.Z.Lv, F.C.Lv, Ice accretion on superhydrophobic aluminum surfaces under low-temperature conditions, Cold Reg Sci Technol., 62, 29(2010)

11 R.Jafari, R.Menini, M.Farzaneh, Superhydrophobic and ice-phobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings, Appl. Surf. Sci., 257, 1540(2010)

12 L.Mishchenko, B.Hatton, V.Bahadur, J.A.Taylor, T.Krupenkin, J.Aizenberg, Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets, ACS NANO, 12(4), 7699(2010)

13 R.Menini, Z.Ghalmi, M.Farzaneh, Highly resistant icephobic coatings on aluminum alloys, Cold Reg Sci Technol., 65, 65(2011)

14 HE Min, SONG Yanlin, LIU Biqian, Anti-icing, antifrost coat and its production method, China Patent, CN 101225272 A (2008)

(何 敏, 宋延林, 刘必前, 防冰霜涂料及其使用方法, 中国发明专利, CN 101225272 A (2008))

15 YU Xinquan, ZHANG Youfa, CHEN Feng, LI Kangning, ZHOU Quanhui, A method for fabricating anti-icing copper surface with low adhesion and superhydrophobic characteristics, China Patent, CN 101698939 A (2010)

(余新泉, 张友法, 陈锋, 李康宁, 周荃卉, 一种具有超疏水低粘着特性的防覆冰铜表面的制备方法, 中国发明专利, CN 101698939 A (2010))

16 XU Wenji, SONG Jinlong, SUN Jing, DOU Qingle, Research on ice and frost repellency of superhydrophobic surfaces on aluminum, Cryogenics, 178(6), 11(2010)

(徐文骥, 宋金龙, 孙晶, 窦庆乐, 铝基体超疏水表面的抗结冰结霜效果分析, 低温工程,  178(6), 11(2010))

17 S.Farhadi, M.Farzaneh, S.A.Kulinich, Anti-icing performance of superhydrophobic surfaces, Appl. Surf. Sci., 257, 6264(2011)

18 S.A.Kulinich, M.Farzaneh, On ice-releasing properties of rough hydrophobic coatings, Cold Reg Sci Technol., 65, 60(2011)

19 S.A.Kulinich, S.Farhadi, K.Nose, X.W.Du, Superhydrophobic surfaces: are they really ice-repellent?, Langmuir, 27(1), 25(2011)

20 K.K.Varanasi, T.Deng, J.D.Smith, M.Hsu, N.Bhate, Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett., 97, 234102(2010)

21 S.Q.Yang, Q.Xia, L.Zhu, J.Xue, Q.J.Wang, Q.M. Chen, Research on the ice phobic properties of fluoropolymerbased materials, Appl. Surf. Sci., 257, 4956(2011)

22 C.A.Knight, Structural biology: adding to the antifreeze agenda, Nature, 406, 249(2000)

23 B.Na, R.L.Webb, A fundamental understanding of factors affecting frost nucleation, Int. J. Heat Mass Transfer, 46, 3797(2003)

24 B.J.Murray, T.W.Wilson, S.Dobbie, Z.Q.Cui, S.M.R.K.Al-Jumur, O.M¨ohler, M.Schnaiter, R.Wagner, S.Benz, M.Niemand, H.Saathoff, V.Ebert, S.Wagner, B.K¨archer, Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions, Nat. Geosci., 3, 233(2010)

25 L.L.Cao, A.K.Jones, V.K.Sikka, J.Z.Wu, D.Gao, Anti- Icing Superhydrophobic Coatings, Langmuir, 25(21), 12444(2009)

26 L.Yin, Q.Xia, J.Xue, S.Q.Yang, In situ investigation of ice formation on surfaces with representative wettability, Appl. Surf. Sci., 256, 6764(2010)

27 A.J.Meuler, J.D.Smith, K.K.Varanasi, J.M.Mabry, G.H.McKinley, R.E.Cohen, Relationships between water wettability and ice adhesion, ACS Appl. Mater. Interfaces, 11(2), 3100(2010)

28 C.Antonini, M.Innocenti, T.Horn, M.Marengo, A.Amirfazli, Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems, Cold Reg Sci Technol., 67, 58(2011)

29 T.Deng, K.K.Varanasi, M.Hsu, N.Bhate, C.Keimel, J.Stein, M.Blohm, Nonwetting of impinging droplets on textured surfaces, Appl. Phys. Lett., 94, 133109(2009)

30 R.Karmouch, G.G.Ross, Experimental study on the evolution of contact angles with temperature near the freezing point, J. Phys. Chem. C, 114, 4063(2010)

31 K.K.Varanasi, M.Hsu, N.Bhate, W.S.Yang, T.Deng, Spatial Control in the heterogeneous nucleation of water, Appl. Phys. Lett., 95, 094101(2009)

32 K.Rykaczewski, J.H.J. Scott, Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures, ACS NANO., 5, 5962(2011)

33 A.Lafuma, D.Qu`er`e, Superhydrophobic states, Nat. Mater., 2(7), 457(2003) 

34 C.H.Chen, Q.Cai, C.Tsai, C.L.Chen, G.Xiong, Y.Yu, Z.Ren, Dropwise condensation on superhydrophobic surfaces with two-tier roughness, Appl. Phys. Lett., 90, 173108(2007)

35 C.Dorrer, J.R¨uhe, Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces, Adv. Mater., 20(1), 159(2008)

36 J.B.Boreyko, C.H.Chen, Self-propelled dropwise condensate on superhydrophobic surfaces, Phys. Rev. Lett., 103, 184501(2009)

37 N.A.Patankar, Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer, Soft Matter., 6, 1613(2010)

38 T.Q.Liu, W.Sun, X.Y.Sun, H.R.Ai, Thermodynamic Analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state, Langmuir, 2010, 26, 14835.

39 X.Chen, J.Wu, R.Ma, M.Hua, N.Koratkar, S.Yao, Z.Wang, Nanograssed micropyramidal architectures for continuous dropwise condensation, Adv. Funct. Mater., 21, 4617(2011)

40 C.Ishino, K.Okumura, D. Qu´er´e, Wetting transitions on rough surfaces, Europhys. Lett., 68, 419(2004)
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 周章瑞, 吕培森, 赵国旗, 张剑, 赵云松, 刘丽荣. 两种“WRe”型低成本第二代镍基单晶高温合金的高温持久变形机制[J]. 材料研究学报, 2023, 37(5): 371-380.
[5] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] 陈瑞志, 刘丽荣, 郭圣东, 张迈, 卢广先, 李远, 赵云松, 张剑. 一种6Re/3Ru镍基单晶高温合金微观组织的稳定性和高温持久性能[J]. 材料研究学报, 2023, 37(10): 721-730.
[7] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[8] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[9] 何禹锋, 王莉, 王栋, 王绍钢, 卢玉章, 谷阿山, 申健, 张健. 热等静压对第三代单晶高温合金DD33显微组织和持久性能的影响[J]. 材料研究学报, 2022, 36(9): 649-659.
[10] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[11] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[12] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[13] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[14] 赵宁, 焦大, 朱艳坤, 刘德学, 刘增乾, 张哲峰. 天然铠甲高效防护的材料学机理[J]. 材料研究学报, 2022, 36(1): 1-7.
[15] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.