Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (4): 433-438    
  研究论文 本期目录 | 过刊浏览 |
纳米晶体钛基掺钽TiO2薄膜的摩擦磨损性能
于春杭, 邵红红, 许晓静, 翟瑞
江苏大学材料科学与工程学院 镇江 212013
Friction/Wear Properties of Ta–Doped TiO2 Films on Surface of Nano–Grained Ti
YU Chunhang, SHAO Honghong, XU Xiaojing, ZHAI Rui
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
引用本文:

于春杭 邵红红 许晓静 翟瑞. 纳米晶体钛基掺钽TiO2薄膜的摩擦磨损性能[J]. 材料研究学报, 2011, 25(4): 433-438.
, . Friction/Wear Properties of Ta–Doped TiO2 Films on Surface of Nano–Grained Ti[J]. Chin J Mater Res, 2011, 25(4): 433-438.

全文: PDF(1013 KB)  
摘要: 采用室温直流反应磁控溅射技术在纳米晶体钛表面制备掺钽TiO2薄膜, 研究了掺Ta量对纳米晶体钛基TiO2薄膜摩擦磨损性能的影响。结果表明: 在室温模拟人体体液条件下, 掺钽TiO2薄膜与不锈钢淬火钢球(Φ4 mm)对摩的磨损率为10-6--10-5 mm m-1• N-1级; 随着Ta含量的增加, 薄膜的摩擦系数和磨损率呈先减小后增加的趋势, 掺Ta量(质量分数)为22%Ta的TiO2薄膜具有最低的摩擦系数(0.20)和磨损率(1.5×10-6 mm m-1• N-1。具有良好的抗磨性能与其硬度与弹性模量比高、抗腐蚀性强和摩擦系数低一致。
关键词 材料表面与界面掺钽TiO2薄膜磁控溅射纳米晶体钛摩擦磨损    
Abstract:The friction/wear properties of TiO2 films with different Ta-doped content deposited on surface of nano-grained Ti by DC reactive magnetron sputtering technology at room temperature were investigated. The results show that the Ta-doped TiO2 films exhibit the specific wear rate on the order of 10-6--10-5 mm m-1• N-1 sliding against a stainless steel quenched ball (2 mm in radius) at room temperature by simulation body fluid. With the increasing Ta content in TiO2 films, the friction coefficient and wear rate of TiO2 films were gradually decreased and then increased. And the TiO2 film with about 22% Ta–doped has the smallest friction coefficient (0.20) and wear rate (1.5×10-6 mm m-1• N-1). The good wear-resistance of the TiO2 films with about 22% Ta–doped is in accordance with its high hardnessto-modulus ratio, good corrosion-resistance and low friction coefficient.
Key wordssurface and interface in the materials    Ta–doped TiO2 films    magnetron sputtering    nano-grained Ti    friction and wear
收稿日期: 2011-04-08     
ZTFLH: 

TH117

 
基金资助:

国家自然科学基金重点项目51074079资助。

1 M.Geetha, A.K.Singh, R.Asokamani, A.K.Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants-A review, Progress in Materials Science, 54(3), 397(2009)

2 V.V.Stolyarov, Y.T.Zhu, I.V.Alexandrov, T.C.Lowe, R.Z.Valiev, Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling, Materials Science and Engineering A, 343(1-2), 43(2003)

3 H.J.Rack, J.I.Qazi, Titanium alloys for biomedical applications, Materials Science and Engineering C, 26(8),1269(2006)

4 P.Q.La, J.Q.Ma, Y.T.Zhu, J.Yang, W.M.Liu, Q.J.Xue, R.Z.Valiev, Dry-sliding tribological properties of ultrafinegrained Ti prepared by severe plastic deformation, Acta Materialia, 53(19), 5167(2005)

5 H.H.Shao, C.H.Yu, X.J.XU, J.Wang, R.Zhai, X.J.Wang, Influence of Ti nanocrystallization on microstructure, interface bonding, surface energy and blood compatibility of surface TiO2films, Applied Surface Science, 257(5), 1649(2010)

6 YU Chunhang, SHAO Honghong, XU Xiaojing, ZHAI Rui, Research of the growth characteristics and biological activity of TiO2 thin films on nano-titanium substrate, Journal of Functional Materials, 41(5), 845(2010)

(于春杭, 邵红红, 许晓静, 翟瑞, 纳米钛基TiO2薄膜生长特点和生物活性研究, 功能材料, 41(5), 845(2010))

7 P.Kasemanankul, N.W.Anan, S.Chaiyakun, P.Limsuwan, V.Boonamnuayvitaya, Low-temperature deposition of (110) and (101) rutile TiO2 thin films using dual cathode DC unbalanced magnetron sputtering for inducing hydroxyapatite, Materials Chemistry and Physics, 117(1), 288(2009)

8 Ulrike Diebold, The surface science of titanium dioxide, Surface Science Reports, 48(5-8), 53(2003)

9 N.Huang, Y.R.Chen, J.M.Luo, J.Yi, R.Lu, J.Xiao, N.X.Zhen, In vitro investigation of blood compatibility of Ti with oxide layers of rutile structure, J. Biomater. Appl., 8(4), 404(1994)

10 M.F.Maitz, M.T.Pham, E.Wieser, I.Tsyganov, Blood compatibility of titanium oxide with various crystal structure and element doping, J. Biomater. Appl., 17(4), 303(2003)

11 Yan Li, Tingting Zhao, Songbo Wei, Yan Xiang, Hong Chen, Effect of Ta2O5/TiO2 thin film on mechanical properties, corrosion and cell behavior of the Ni-Ti alloy implanted

with tantalum, Materials Science & Engineering C, 30(8), 1217(2010)

12 YU Chunhang, SHAO Honghong, XU Xiaojing, ZHAI Rui, Research of microstructures and blood compatibility of Ta-doped TiO2 films on ultrafine-grained Ti, Journal of Functional Materials, 41(S3), 552(2010)

(于春杭, 邵红红, 许晓静, 翟 瑞, 超细晶粒钛表面掺钽TiO2薄膜的微结构及血液相容性研究, 功能材料, 41(S3), 552(2010))

13 Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T, Solutions able to reproduce in vivo surfacestructure changes in bioactive glass-ceramic A-W3, Journal of Biomedical Materials Research, 24(6), 721(1990)

14 N.Fujisawa, D.R.McKenzie, N.L.James, J.C.Woodard, M.V.Swain, Combined influences of mechanical properties and surface roughness on the tribological properties of amorphous carbon coatings, Wear, 260(1-2), 62(2006)

15 A.Leyland, A.Mstthews, On the significance of H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behaviour, Wear, 246(1-2), 1(2000)

16 J.L.Lin, J.J.Moore, B.Mishra, M.Pinkas, W.D.Sproul, The structure and mechanical and tribological properties of TiBCN nanocomposite coatings, Acta Materialia, 58(5), 1554(2010)
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[4] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[7] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[9] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[10] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[11] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[12] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[13] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[14] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[15] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.