Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (6): 579-584    
  研究论文 本期目录 | 过刊浏览 |
温敏聚氨酯软段的结晶行为及其智能响应特性
周虎1, 曾坚贤1, 陈东初1, 范浩军2, 曾俊长1
1.湖南科技大学化学化工学院 湘潭 411201
2.四川大学制革清洁技术国家工程实验室 成都 610065
The Crystalization of Soft Segment of Thermal Sensitive Polyurethane and Its Intelligent Properties
ZHOU Hu1,  ZENG Jianxian1,  CHEN Dengchu1,  FAN Haojun2,  ZENG Junchang1
1.School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201
2.National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065
引用本文:

周虎 曾坚贤 陈东初 范浩军 曾俊长. 温敏聚氨酯软段的结晶行为及其智能响应特性[J]. 材料研究学报, 2010, 24(6): 579-584.
. The Crystalization of Soft Segment of Thermal Sensitive Polyurethane and Its Intelligent Properties[J]. Chin J Mater Res, 2010, 24(6): 579-584.

全文: PDF(990 KB)  
摘要: 采用两步溶液共聚技术制备了一种温敏聚氨酯材料, 并对其软段的结晶行为以及智能响应特性和机理进行了分析。结果表明: 温敏聚氨酯具有典型的嵌段和微相分离结构, 软段和硬段各具独立的结晶熔融转变温度(软段的结晶熔融转变温度定义为开关温度), 且软段的结晶具有较好的热致可逆性。当温度低于开关温度时, 软段具有完整的结晶形态, 温敏聚氨酯膜的内部自由体积孔洞尺寸和透汽性均较低;当温度高于开关温度时, 软段结晶完全熔融、消失, 同时膜的内部自由体积孔洞尺寸和透汽性均明显增大, 显示了温敏特性。温敏聚氨酯软段的相态转变决定材料的智能响应特性, 并且这一过程可通过外界温度的改变加以控制。
关键词 智能材料聚氨酯结晶行为温敏特性    
Abstract:A thermal sensitive polyurethane (TSPU) membrane was prepared by two-step polymerization in solvent and the crystallization of soft segment was analyzed. The results reveal that TSPU shows an obvious phase-separated structure and a phase transition temperature of the soft segment (defined as switch temperature, Ts). The switch temperature (Ts) and the thermal sensitivity of TSPU still remain available after thermal cyclic process. Moreover, when the temperature was lower than the Ts, the crystal of the soft segment was visible, but when the temperature exceeded the phase transition temperature of soft segment, the crystal of the soft segment melted and disappeared. As a result, the average radius (R) of the free volume holes and water vapor permeability of TSPU membrane showed a response to thermal stimuli. The phase transition of the soft segment controlled the significant change in free volume hole size and WVP, and the process mentioned above was stimulated by the external temperature.
Key wordsintelligent materials    polyurethane    crystallization    thermal sensitivity
收稿日期: 2010-04-21     
ZTFLH: 

TQ323.8

 
基金资助:

国家863计划2007AA032341和国家自然科学基金21006022, 20976040资助项目。

[1] Y.Chen, Y.Liu, H.J.Fan, Hui Li, Bi Shi, H.Zhou, B.Y.Peng, The polyurethane membranes with temperature sensitivity for water vapor permeation, Journal of Membrane Science, 287, 192(2007) [2] H.M.Jeong, J.B.Lee, S.Y.Lee, B.K.Kim, Shape memory polyurethane containing mesogenic moiety, Journal of Materials Science, 35, 279(2000) [3] X.M.Ding, J.L.Hu, X.M.Tao, Effect of crystal melting on water vapor permeability of shape memory polyurethane film, Textiles Research Journal, 74, 39(2004) [4] H.M.Jeong, B.K.Ahn, S.M.Cho, B.K.Kim, Water vapor permeability of shape memory polyurethane with amorphous reversible phase, Journal of Polymer Science: Part B: Polymer Physics, 38, 3009(2000) [5] H.J.Fan, L.Li, X.N.Fan, B.Shi, The water vapor permeability of leather finished by thermo-responsive polyurethane, Journal of the Society of Leather Technologists and Chemists, 89, 121(2005) [6] B.K.Kim, S.Lee, Y.Xu, Polyurethanes having shape memory effects, Polymer, 37, 5781(1993) [7] B.K.Kim, S.Y.Lee, J.S.Lee, Polyurethane ionomers having shape memory effects, Polymer, 39, 2803(1998) [8] S.Hayashi, N.Ishikawa, C.Giordano, High Moisture permeability Polyurethane for Textile Application, Journal of Coated Fabric, 23, 74(1993) [9] W.Y.Jeong, S.K.An, The transport properties of polymer membrane-fabric composites, Journal of Materials Science, 36, 4797(2001) [10] Y.C.Jean, J.P.Yuan, J.Liu, H.J.Yang, Correlations between gas permeation and free- 33 hole properties probed by position annihilation spectroscopy, Journal of Polymer Science: Part B: Polymer Physics, 33, 2365(1995) [11] H.Nakanishi, S.J.Wang, Y.C.Jean, Positron Annihilation Studies of Fluids (Singapore, World Science, 1988) p.81 [12] S.Mondal, J.L.Hu, Water vapor permeability of cotton fabrics coated with shape memory polyurethane, Carbohydrate Polymers, 25, 124(2006) [13] I.Yilgor, Textiles coated with waterproof, moisture vapor permeable polymers, US patent, 5, 389, 430(1995) [14] H.Yin, Z.J.Yin, W.T.Ma, D.M.Zhu, A review of studies of polymeric membranes by positron annihilation lifetime spectroscopy, Plasma Science and Technology, 7(5), 56(2005)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 曾志鹏, 宋小艳, 孙勇, 宋双林, 陆伟, 贺正龙. 聚氨酯/水玻璃注浆材料固化过程中的微观结构和力学性能[J]. 材料研究学报, 2022, 36(11): 855-861.
[3] 徐稳, 王知杰, 朱雯雯, 彭子童, 姚楚, 游峰, 江学良. 微穿孔板-聚合物层状结构材料的制备和吸声性能[J]. 材料研究学报, 2021, 35(7): 535-542.
[4] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[5] 潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 449-457.
[6] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[7] 丁仁浩, 曹丹, 许璐, 王自强, 李建喜, 马红娟. 电子束辐射对取向性聚醚醚酮性能的影响[J]. 材料研究学报, 2020, 34(11): 822-828.
[8] 郭瑞彦, 张国利, 岳海亮, 陈联云. 聚氨酯涂层对复合材料层板冲击后压缩性能的影响[J]. 材料研究学报, 2017, 31(7): 526-536.
[9] 卢秋影, 姜宏伟. 聚醚改性MQ树脂增强聚氨酯弹性体[J]. 材料研究学报, 2017, 31(7): 489-494.
[10] 顾莹, 刘立柱, 张笑瑞, 翁凌. 掺杂铝溶胶改性可膨胀石墨(EG)对半硬质聚氨酯泡沫(SRPUF)阻燃性能的影响[J]. 材料研究学报, 2017, 31(12): 918-924.
[11] 周醒, 胡斌, 肖文强, 姜豪, 张莉君, 王正君, 蔺海兰, 卞军, 赵新为. 氧化石墨烯接枝聚乙烯醇/热塑性聚氨酯复合材料的制备和性能[J]. 材料研究学报, 2017, 31(11): 874-880.
[12] 岳海亮, 张国利, 王壮志, 郭瑞彦. 聚氨酯涂层对复合材料层合板抗反复低速冲击性能的影响*[J]. 材料研究学报, 2016, 30(5): 379-387.
[13] 李国兴,赵景珊,孙科,王强,王明. 原位聚合制备聚氨酯/氧化石墨烯纳米复合材料的力学性能和热稳定性能研究*[J]. 材料研究学报, 2014, 28(12): 901-908.
[14] 周胜之, 宋晓艳, 程博闻, 程国清, 陈田君. 静电纺丝聚氨酯/多面体倍半硅氧烷(POSS)复合纳米纤维的性能研究*[J]. 材料研究学报, 2013, 27(5): 520-525.
[15] 何显运, 丘永亮, 王迎军,吴刚. 新型可降解聚氨酯三维多孔支架的制备和性能*[J]. 材料研究学报, 2013, 27(4): 391-396.