Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (4): 429-433    
  研究论文 本期目录 | 过刊浏览 |
Sn和Te掺杂对CrSb2热电性能的不同影响
李海金, 张清, 刘义, 孙文斌
安徽工业大学数理学院 马鞍山 243032
The Different Effect of Sn and Te Substitution for Sb on Thermoelectric Properties of CrSb2
LI Haijin, ZHANG Qing, LIU Yi, SUN Wenbin
School of Mathematics and Physics, Anhui University of Technology, Ma’anshan 243002
引用本文:

李海金 张清 刘义 孙文斌. Sn和Te掺杂对CrSb2热电性能的不同影响[J]. 材料研究学报, 2010, 24(4): 429-433.
, , , . The Different Effect of Sn and Te Substitution for Sb on Thermoelectric Properties of CrSb2[J]. Chin J Mater Res, 2010, 24(4): 429-433.

全文: PDF(1018 KB)  
摘要: 

研究了Sn、Te掺杂对CrSb2热电性能的不同影响。结果表明, Sn、Te掺杂引起的晶格畸变使电子浓度提高, Te替代Sb是n--型掺杂, 而Sn替代Sb是p--型掺杂。由于补偿效应, CrSb 1.99 Sn 0.01的电子浓度小于CrSb 1.99 Te 0.01的电子浓度, 导致Sn掺杂使CrSb2的电阻率和热电势|S|降低的幅度较小。掺杂后声子杂质(Sn、Te)散射增强, CrSb 1.99 Sn 0.01和CrSb 1.99 Te 0.01的热导率都明显减小, 而Te的原子量比Sn的大, 散射作用更强, 热导率减小的幅度更加明显。因此, Te掺杂改善了CrSb2的热电性能, 而Sn掺杂没有改善其性能。此外, 由于Sn和Te的d轨道填满了电子而没有磁性, 掺杂后样品的Neel温度没有明显改变。

关键词 材料科学基础学科 CrSb2  电阻率  热电势  热导率    
Abstract

The different effect of Sn and Te substitution for Sb on thermoelectric properties of CrSb2 was investigated. The results show that the effect of lattice distortion after doping leads to the increase in the electron concentration of CrSb2. The substitution of Sn and Te for Sb can be regarded as p–doping and n–doping, respectively, the electron concentration of CrSb1.99Sn0.01 is smaller than that of CrSb1.99Te0.01 due to the compensation effect, leading to lesser decrease of resistivity and the absolute value of thermopower |S| for Sn doping than that of Te doping. Thermal conductivity of CrSb1.99Sn0.01 and CrSb1.99Te0.01 decreased after doping, which can be attributed to the enhancement of the phonon
scattering by impurity (Sn and Te, respectively) atoms, the atomic mass of Te is greater than that of Sn, the phonon scattering by impurity atoms is stronger, resulting in the more decrease of thermal conductivity for Te doping. As a result, the thermoelectric properties of CrSb2 was improved by Te doping, however, Sn doping did not meet the purpose of improving the performance of CrSb2. In addition, the Neel temperature does not change much after doping, which can be attributable to non-magnetic feature with full 3d orbits for Sn and Te.

Key wordsfoundational discipline in materials science     CrSb2    resistivity     thermo-power     thermal conductivity
收稿日期: 2010-04-15     
ZTFLH: 

O482

 
基金资助:

国家自然科学青年基金50701043资助项目。

参考文献: [1] F. J. DiSalvo, Thermoelectric Cooling and Power Generation, Science, 285, 703-706(1999) [2] G. S. Nolas, J. Sharp,and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, 1stedition, (Germany, Springer-Verlag Berlin Heidelberg. 2001) p.1-14. [3] H. Holseth, A. Kjekshus,Compounds with the Marcasite Type Crystal Structure. II. On the Crystal Structures of the Binary Pnictides,Acta Chemica Scandinavica, 22,3284-3292(1968) [4] Y. Takahashi, T. Harada, T. Kanomata, K. Koyama, H. Yoshida, T. Kaneko, M. Motokawa, M. Kataoka,Magnetoresistance effect of pseudobinary compounds Cr1-xRuxSb2,Journal of Alloys and Compounds, 459,78-82(2008) [5] T. Harada, T. Kanomata, Y. Takahashi, O. Nashima, H. Yoshida, T. Kaneko,Structural and electrical properties of Cr1-xRuxSb2,Journal of Alloys and Compounds, 383,200-204(2004) [6] K. Adachi, K. Sato, M. Matsuura, Magnetic Properties of CrSb2, Journal of the Physical Society of Japan, 26,906-910(1969) [7] John B. Goodenough, Energy Bands in TX2 Compounds with Pyrite, Marcasite, and Arsenopyrite Structures, Jounal of Solid State Chemistry, 5,144-152(1972) [8] H. Holseth, A. Kjekshus, Compounds with the Marcasite Type Crystal Structure: Ⅵ: Neutron Diffraction Studies of CrSb2 and FeSb2, Acta Chemica Scandinavica, 24, 3309-3316(1970) [9] 高敏,张景韶,[英]D. M. ROWE, 温差电转换及其应用, 第一版 (北京, 兵器工业出版社, 1996) [10] 阎守胜,固体物理基础,第三版(北京,北京大学出版社,2002) [11] K. Berggold, M. Kriener, C. Zobel, A. Reichl, M. Reuther, R. Müller, A. Freimuth, and T. Lorenz, Thermal conductivity, thermopower, and figure of merit of La1?xSrxCoO3, Physical Review B, 72,155116(2005)
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[9] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[10] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[11] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[12] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[13] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[14] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.
[15] 姚武,吴梦雪,魏永起. 三元复合胶凝体系中硅灰和粉煤灰反应程度的确定*[J]. 材料研究学报, 2014, 28(3): 197-203.