Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (4): 415-420    
  研究论文 本期目录 | 过刊浏览 |
多孔金属比表面积的计算方法
刘培生
北京师范大学核科学与技术学院 射线束技术与材料改性教育部重点实验室 北京 100875
Calculation method for the specific surface area of porous metals
LIU Peisheng
The Key Laboratory of Beam Technology and Material Modification of Ministry of Education & College of Nuclear Science and Technology; Beijing Normal University; Beijing 100875
引用本文:

刘培生. 多孔金属比表面积的计算方法[J]. 材料研究学报, 2009, 23(4): 415-420.
. Calculation method for the specific surface area of porous metals[J]. Chin J Mater Res, 2009, 23(4): 415-420.

全文: PDF(825 KB)  
摘要: 

提出了一种根据泡沫金属的孔率和孔径这两个基本参量计算其比表面积的方法. 利用泡沫金属比表面积与孔率和孔径的对应数理关系, 结合有关实验数据,成功地计算出了电沉积法和高压渗流铸造法制备的泡沫金属的比表面积.

关键词 材料科学基础学科多孔金属多孔材料比表面积计算方法    
Abstract

By means of two elementary parameters, a method has been put forward to calculate the specific surface area from porosity and pore diameter for metal foams. Using the relevant mathematicalphysical relationship between the specific surface area and the elementary parameters of porosity and pore diameter, the specific surface areas of two classes of metal foams, which were respectively prepared by different technologies of electrical deposition and high pressure permeating casting, are successfullycalculated out.

Key wordsfoundational discipline in materials science    porous metal    porous material    metal foam    specific surface area    calculation method
收稿日期: 2009-02-24     
ZTFLH: 

TB383

 
基金资助:

北京市凝聚态物理重点学科共建项目XK100270454和北师大校测试基金支持.

1 L.J.Gibson, M.F.Ashby, Cellular Solids: Structure and Properties (Cambridge, Cambridge University Press, 1999) 2 J.Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, 46, 559(2001) 3 P.S.Liu, K.M.Liang, Functional materials of porous metals made by P/M, Electroplating and some other techniques, J. Meter. Sci., 36(21), 5059(2001) 4 LIU Peisheng, Introduction to Porous Materials (Beijing, Tsinghua University Press, 2004) (刘培生,  多孔材料引论  (北京, 清华大学出版社, 2004)) 5 M.Kaviany, Principles of Heat Transfer in Porous Media, Second Edition (New York, Springer-Verlag, 1995) 6 J.F.Allard, Propagation of sound in porous media: modeling sound absorbing materials (London, New York, Elsevier Applied Science, 1993) 7 LIU Peisheng, Determining methods for specific surface area and pore morphology of porous materials, Rare Metal Materials and Engineering, 35(S2), 25(2006) (刘培生, 多孔材料比表面积和孔隙形貌的测定方法, 稀有金属材料与工程,   35(S2), 25(2006)) 8 MA Liqun, HE Deping, Fabrication and pore structure control of new type aluminium foams, Chinese Journal of Materials Research, 8(1), 11(1994) (马立群, 何德坪, 新型泡沫铝的制备及其孔结构的控制, 材料研究学报,  8(1), 11(1994)) 9 LIU Peisheng, A new model for porous materials, Chinese Journal of Materials Research, 20(1), 64(2006) (刘培生, 关于多孔材料的新模型, 材料研究学报, 20(1), 64(2006)) 10 P.S.Liu, Chapter 3 Porous Materials: The mathematicalphysical expressions for some properties of threedimensional reticulated porous metallic materials in the same analytical model system. In Materials Science Research Horizon, (New York, NOVA Science Publishers, 2007) 11 P.S.Liu, Mechanical behaviors of porous metals under biaxial tensile loads, Mater. Sci. Eng. A, 422(1-2),176(2006) 12 P.S.Liu, A new analytical model about the relationship between nominal failure stresses and porosity for foamed metals under biaxial tension, Materials and Design, 28, 2678(2007)
[1] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[3] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[6] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[7] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[8] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[9] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[10] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[11] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[12] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[13] 刘培生,顷淮斌. 一种具有球形孔隙的高孔率泡沫钛合金*[J]. 材料研究学报, 2015, 29(5): 346-352.
[14] 方一航,张梦贤,赵先锐,李志刚,王焕平,陈卫平. 高分子凝胶改进铈锆固溶体的制备及表征[J]. 材料研究学报, 2015, 29(4): 315-320.
[15] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.