Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (3): 317-322    
  研究论文 本期目录 | 过刊浏览 |
用相场方法模拟Fe--C合金枝晶生长
张玉妥1;   李东辉1;  王承志1;  李依依2
1.沈阳理工大学材料科学与工程学院 沈阳 110168
2.中国科学院金属研究所 沈阳 110016
Simulation of dendrite growth of Fe–C alloy using phase field method
ZHANG Yutuo;  LI Donghui ; WANG Chengzhi ; LI Yiyi
1.School of Materials Science and Engineering; Shenyang Ligong University; Shenyang 110168
2.Institute of Metal Research CAS; Shenyang 110016
引用本文:

张玉妥 李东辉 王承志 李依依. 用相场方法模拟Fe--C合金枝晶生长[J]. 材料研究学报, 2009, 23(3): 317-322.
. Simulation of dendrite growth of Fe–C alloy using phase field method[J]. Chin J Mater Res, 2009, 23(3): 317-322.

全文: PDF(811 KB)  
摘要: 

采用相场法模拟了Fe--0.5%C合金等温凝固过程中单个枝晶和多个枝晶的生长, 研究了过冷度、各向异性、界面厚度、晶体取向以及扰动对枝晶形貌的影响, 获得了具有二次分枝的枝晶形貌, 再现了枝晶生长过程及枝晶臂之间的竞争生长. 模拟结果表明: 凝固过程中存在溶质富集和枝晶偏析, 枝晶主干溶质浓度最低, 枝晶臂之间的液相浓度最高. 随着过冷度的增大, 枝晶生长加快且分枝发达; 界面厚度直接影响枝晶的生长速度; 各向异性影响枝晶的形态; 晶体取向与坐标轴方向一致时枝晶优先生长;扰动的加入导致枝晶分枝的形成.

关键词 材料科学基础学科枝晶生长相场法Fe--C合金过冷度    
Abstract

The evolution of a single dendrite growth and the morphology of multi–dendrite during isothermal solidification of Fe–0.5%C alloy are simulated using phase field method. The effects of supercooling, anisotropy of crystal, interface thickness and crystal orientation as well as the noise on the dendritic morphology are studied. The results illustrate that the morphology of the dendrite is composed of the primary and secondary arms. The process of the dendrite growth and the competition between the dendrite arms are reproduced during solidification. The solute enrichment and the dendrite segregation occur during solidification. The primary arms have the lowest concentration, but the regions between the arms have the highest concentration because of the build–up of solute. With the increment of supercooling, the dendrite grows quickly and the branches are developed. The interface thickness impacts the growth velocity of dendrite. The anisotropy of the crystal exerts an influence on the dendritic morphology. The dendrite grows preferentially when the crystal orientation is consistent with the coordinate axis. The noise leads to the development of the dendritic branches.

Key wordsfoundational discipline in materials science    dendritic growth    phase field method    Fe–C alloy    supercooling
收稿日期: 2008-08-26     
ZTFLH: 

TG111

 
基金资助:

沈阳市青年科技人才培育资助项目1081230--1--00.

1 W.Kurz,D.J.Fisher, Fundamentals of Solidification, 4th edition (Switzerland, Trans Tech Publications Ltd, 1998) p.4
2 R.Sasikumar, E.Jacob, Simulation of side branch development in thermal dendritic grains, Materials Science Form, 215–216, 191(1996)
3 Pil–Ryung Cha, Dong–Hee Yeon, Jong–Kyu Yoon, Phase– field model for multicomponent alloy solidification, Journal of Crystal Growth, 274, 281(2005)
4 D.M.Anderson, G.B.McFadden, A.A.Wheeler, A phase–field model of solidification with convection, Physica D: Nonlinear Phenomena, 135, 175(2000)
5 Hiroki Kobayashi, Machiko Ode, Seong Gyoon Kim, Won Tae Kim, Toshio Suzuki, Phase–field model for solidification of ternary alloys coupled with thermodynamic database, Scripta Materialia, 48, 689(2003)
6 FENG Li, WANG Zhiping, LU Yang, ZHU Changsheng, Phase–field model of isothermal with multiple solidification of binary alloy grains, Acta Physica Sinica, 57, 1084(2008)
(冯力, 王智平, 路阳, 朱昌盛, 二元合金多晶粒的枝晶生长的等温相场模型, 物理学报,   57, 1084(2008))
7 LONGWenyuan, CAI Qizhou, WEI Bokang, CHEN Wenliang, Simulation of dendritic growth of multicomponent alloys using phase–field method, Acta Physica Sinica, 55, 1341(2006)
(龙文元, 蔡启舟, 魏伯康, 陈文亮, 相场法模拟多元合金过冷熔体中的枝晶生长, 物理学报,  55, 1341(2006))
8 NIU Yane, YANWen, FENG Xiaoming, CHEN Jian, FAN Xinhui, Phase–field simulation of dendrite morphologies of Fe–C alloy in isothermal solidification, Hot Working Technology, 37, 4(2008)
(牛艳娥, 严文, 冯小明, 陈建, 范新会, Fe--C合金等温凝固过程枝晶形貌的相场法模拟, 热加工工艺,  37, 4(2008))
9 NIU Yane, YAN Wen, FENG Xiaoming, CHEN Jian, FAN Xinhui, Phase–field simulation of Fe–C Alloy in the isothermal solidification, Foundry Technology, 29, 244(2008)
(牛艳娥, 严文, 冯小明, 陈建, 范新会, Fe--C合金等温凝固过程的相场法模拟, 铸造技术,   29, 244(2008))
10 Toshio Suzuki, Machiko Ode, Seong Gyoon Kim, Won Tae Kim, Phase–field model of dendritic growth, Journal of Crystal Growth, 237–239, 125(2002)
11 Seong Gyoon Kim, Won Tae Kim, Toshio Suzuki, Phase– field model for binary alloys, Physical Review E, 60(6), 7186 (1999)

[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孔亚非, 罗兴宏, 李洋, 刘实. 重力对镍基单晶高温合金枝晶生长和微观偏析的影响[J]. 材料研究学报, 2023, 37(10): 770-780.
[4] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[6] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[7] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[8] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[9] 周野, 毛萍莉, 杨博莘, 王志, 周乐, 刘正, 王峰. Cu对Mg-7Zn-0.6Zr合金流动性的影响[J]. 材料研究学报, 2018, 32(9): 697-705.
[10] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[11] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[12] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[13] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[14] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[15] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.