Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (3): 287-290    
  论文 本期目录 | 过刊浏览 |
氧杂质致Ti-Si-N薄膜高硬度损失的机理
马大衍;马胜利;徐可为;薛其坤;S.Veprek
西安交通大学金属材料强度国家重点实验室
The hardess degradation of naocomposite Ti-Si-N coatings induced by oxygen impurity and its mechanisms
;;;
西安交通大学
引用本文:

马大衍; 马胜利; 徐可为; 薛其坤; S.Veprek . 氧杂质致Ti-Si-N薄膜高硬度损失的机理[J]. 材料研究学报, 2008, 22(3): 287-290.
, , , , . The hardess degradation of naocomposite Ti-Si-N coatings induced by oxygen impurity and its mechanisms[J]. Chin J Mater Res, 2008, 22(3): 287-290.

全文: PDF(839 KB)  
摘要: 基于纳米复合Ti-Si-N薄膜硬度对界面相微结构及微尺度变化极为敏感的实验事实, 定量表征了薄膜的硬度与氧杂质含量的关系. 结果表明, 与高纯度薄膜40-55 GPa高硬度比较,1%-1.5%的氧杂质含量导致薄膜的硬度下降到30 GPa左右.根据纳米晶界面原子模型和实验结果,氧杂质与纳米尺度界面交互作用所引发的微尺度缺陷是硬度下降的诱因,晶界面的氧杂质密度是薄膜高硬度损失程度的决定因素,单个纳米晶周围的氧杂质覆盖度达到10个原子以上时, 薄膜的硬度只能达到30 GPa.
关键词 材料科学基础学科纳米复合薄膜    
Abstract:There has been a wide attention in nanocomposite coatings with interface phases because of their superhardness, but the limitation hardness that this kind of materials can achieve was still an argued question by many researchers. In this paper, we observe the limitation hardness of nanocomposite coatings is very sensitive to microstructure of interface. It is shown that a dependent relation between hardness and oxygen impurity content of coatings resulted from our experiments. Based on an atomic model analysis, the decreasing of hardness caused by a small amount of oxygen impurities can be explained by oxygen atoms induce weakening of the Si3N4 interface which acts as a “glue” between the TiN nanocrystals. Further, we conclude that density of oxygen atoms around grain boundary is a dominant factor on hardness degradation of the films
Key words
收稿日期: 2007-06-28     
1 MA Dayan,MA Shengli,XU Kewei,S.Veprek,A study on thermal stability of nano-structure Ti-Si-N coatings at elevated temperature,Chinese Journal of Materials Re- search,18(6),617(2004) (马大衍,马胜利,徐可为,S.Veprek,纳米Ti-Si-N薄膜的高温热稳定性研究,材料研究学报,18(6),617(2004))
2 S.Veprek,P.Nesladek,A.Niederhofer,Search for super- hard materials:nanocrystalline composites with hard- ness exceeding 50 GPa,Nanostructured Materials,10(5), 679(1998)
3 J.Haines,J.M.Léger,G.Bocquillon,Synthesis and design of superhard materials,Annu.Rev.Mater.Res.,31(1), 25(2001)
4 Wang Y.M.,Chen M.W.,Zhou F.H.,Ma E.,High ten- sile ductility in a nanostructured metal,Nature,419, 912(2002)
5 S.Li,Y.Shi,H.Peng,Ti-Si-N films prepared by plasma- enhanced chemical vapour deposition,Plasma Chemistry and Plasma Processing,12(3),287(1992)
6 J.Patscheider,Nanocomposite hard coatings for wear pro- tection,MRS Bull.,28(3),180(2003)
7 Fanghua MEI,Nan SHAO,Xiaoping HU,Geyang LI, Mingyuan GU,Microstructure and mechanical properties of reactively sputtered Ti-Si-N nanocomposite films,Ma- terials Letters,59,2442(2005)
8 W.J.Meng,X.D.Zhang,B.Shi,R.C.Tittsworth,L.E.Rehn, P.M.Baldo,Microstructure and mechanical properties of Ti-Si-N coatings,J.Mater.Res.,17,2628(2002)
9 S.H.Kim,J.K.Kim,K.H.Kim,Influence of deposition con- ditions on the microstructure and mechanical properties of Ti-Si-N films by DC reactive magnetron sputtering,Thin Solid Films,420-421,360(2002)
10 P.Vaz,L.Rebouta,Ph.Godeau,T.Girardeau,J.Pacaud, J.P.Riviere,A.Traverse,Structural transitions in hard Si- based TiN coatings:the effect of bias voltage and temper- ature,Surf.Coat.Technol.,146-144,274(2001)
11 S.A.Barnet,A.Madan,Superhard superlattices,Phys. World,11,45(1998)
12 X.Chu,S.A.Barnett,M.S.Wong,W.D.Sproul,Re- active unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings,Surf. Coat.Technol.,57,13(1993)
13 X.T.Zeng,S.Mridha,U.Chai,Properties of unbalanced magnetron sputtered TiN/NbN multilayer coatings,Jour- nal of Materials Processing Technology,89-90,528(1999)
14 S.Veprek,A.Niederhofer,K.Moto,T.Bolom,H.-D. Mnnling,P.Nesladek,G.Dollinger and A.Bergmaier, Composition,nanostructure and origin of the ultrahard- hess in nc-TiN/α-Si_3N_4/a-and nc-TiSi_2 nanocomposites with Hv=80 to 105 GPa,Surf.Coat.Technol.,133-134, 152(2000)]
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 明思逸, 陈港, 严俊芳, 何嘉皓, 朱家添, 刘映尧, 方志强. 透明阻燃纳米纤维素/黏土复合薄膜的制备和性能[J]. 材料研究学报, 2018, 32(11): 874-880.
[9] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[10] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[11] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[12] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[13] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[14] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[15] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.