Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (4): 296-304    DOI: 10.11901/1005.3093.2024.327
  研究论文 本期目录 | 过刊浏览 |
镀锌紧固件表面硅烷转化膜的制备和性能
李庆鹏1,2(), 刘佳兴1, 安晓云1, 李永志3, 高萌4, 孙洪涛4, 王娜1,2
1.沈阳化工大学 辽宁省特种功能材料合成与制备重点实验室 沈阳 110142
2.沈阳市新型功能涂层材料重点实验室 沈阳 110142
3.沈阳市航达科技有限责任公司 沈阳 110043
4.沈阳先进涂层材料产业技术研究院有限公司 沈阳 110300
Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface
LI Qingpeng1,2(), LIU Jiaxing1, AN Xiaoyun1, LI Yongzhi3, GAO Meng4, SUN Hongtao4, WANG Na1,2
1.Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China
2.Shenyang Key Laboratory for New Functional Coating Materials, Shenyang 110142, China
3.Shenyang Hangda Technology Co. Ltd., Shenyang 110043, China
4.Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110300, China
引用本文:

李庆鹏, 刘佳兴, 安晓云, 李永志, 高萌, 孙洪涛, 王娜. 镀锌紧固件表面硅烷转化膜的制备和性能[J]. 材料研究学报, 2025, 39(4): 296-304.
Qingpeng LI, Jiaxing LIU, Xiaoyun AN, Yongzhi LI, Meng GAO, Hongtao SUN, Na WANG. Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface[J]. Chinese Journal of Materials Research, 2025, 39(4): 296-304.

全文: PDF(14738 KB)   HTML
摘要: 

以氨基硅烷KH550和环氧基硅烷KH560成膜物为原料制备一种复合硅烷转化液/复合硅烷转化膜,使用扫描电子显微镜(SEM)、能谱(EDS)、红外光谱(IR)、中性盐雾实验、极化曲线、长期贮存实验、结合力测试以及铅笔硬度测试等手段表征其贮存稳定性、表面微观形貌、成分、力学性能和耐蚀性能,研究了两种硅烷含量的比对转化液贮存稳定性和耐蚀性的影响。结果表明:KH550与KH560比例为5∶5的复合硅烷转化膜的性能优异,其贮存稳定性达到180 d,72 h中性盐雾实验后,涂层无白锈产生,复合转化膜腐蚀电流密度和极化电阻分别为4.229 × 10-9 A·cm-2和5.443 × 105 Ω·cm2

关键词 材料表面与界面复合转化膜稳定性耐蚀性能镀锌    
Abstract

In order to improve the corrosion resistance of galvanized fasteners, it is necessary to develop a silane conversion film with good storage stability and high corrosion resistance. Herein, a high performance composite silane conversion film was prepared on electroplated Zn surface with amino-silane KH550 and epoxy-silane KH560 as raw materials. The effect of ratios the two silanes on the storage stability of the conversion liquid and the corrosion resistance of the conversion film were studied. The prepared composite silane conversion liquid and composite silane conversion film were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), infrared spectroscopy (IR), neutral salt spray test, polarization curve test, long-term storage test, binding force test and pencil hardness test, in terms of the relevant storage stability, surface morphology, composition, mechanical properties and corrosion etc. The results show that when the ratio of KH550 to KH560 is 5∶5, the composite silane conversion film has the best performance, its storage stability reaches 180 d. After 72 h of neutral salt spray test, no white rust was produced in the coating. The corrosion current density and polarization resistance of the composite conversion film reach 4.229 × 10-9 A·cm-2 and 5.443 × 105 Ω·cm2, respectively. It provides theoretical and application support for the further development of corrosion prevention of galvanized fasteners.

Key wordssurface and interface in the materials    composite conversion film    stability    corrosion resistance    galvanize
收稿日期: 2024-07-29     
ZTFLH:  TG174.4  
基金资助:辽宁省科技厅应用基础研究计划(2023JH2/101300229);中国-西班牙材料联合实验室(2022JH2/10700005)
通讯作者: 李庆鹏,qpli001@163.com,研究方向为环保化防护护术
Corresponding author: LI Qingpeng, Tel: (024)83988092, E-mail: qpli001@163.com
作者简介: 李庆鹏,男,1984年生,博士
KH550∶KH560State
0∶10T
1∶9F
2∶8F
3∶7F
4∶6F
5∶5T
6∶4T
7∶3T
8∶2T
9∶1T
10∶0T
表1  不同硅烷比例转化液在室温储存180 d的稳定性
图1  在室温条件下贮存180 d不同硅烷比例的转化液
图2  不同硅烷比例转化液红外吸收光谱
SamplepHTime 1 / sTime 2 / sTime 3 / sTime 4 / sAverage time / s
Pure-11121.3
0∶10834243.2
5∶58343300320318320.3
6∶48270295268280278.3
7∶38138160172166159.0
8∶287564958980.5
9∶186673728072.8
10∶081310879.5
表2  不同硅烷比例的成膜硫酸铜滴定时间
图3  不同硅烷比例成膜时涂层在5%(质量分数)NaCl中性盐雾中的72 h实验结果
图4  镀锌紧固件和5∶5硅烷比例表面的形貌
图5  硅烷比例为5∶5的转化膜的截面形貌和EDS分层图像
图6  硅烷转化膜的红外吸收光谱
图7  硅烷比例为5∶5的转化膜的附着力
图8  镀锌板和硅烷比例为5∶5的硅烷转化膜的Tafel极化曲线
Sampleφcorr / Vjcorr / A·cm-2Rp / Ω·cm2
Galvanized sheet-1.0956.014 × 10-78.419 × 103
5∶5-1.0514.229 × 10-95.443 × 105
表3  镀锌板和硅烷比例为5∶5的转化膜的动电位极化曲线拟合数据
图9  复合硅烷转化膜的防护机理
1 Harsimran S, Santosh K, Rakesh K. Overview of corrosion and its control: a critical review [J]. Proc. Eng., 2021, 3(1): 13
2 Hou B, Li X, Ma X, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 4: 1
3 Li Q P, Jiang T C, Yan L, et al. Preparation of modified aluminum powder coated with SiO2 and its effect on properties of water-based aluminum rich coatings [J]. Electroplat. Finish., 2023, 42(2): 60
3 李庆鹏, 蒋天成, 阎 磊 等. SiO2包覆改性铝粉的制备及对水性富铝涂料性能的影响 [J]. 电镀与涂饰, 2023, 42(2): 60
4 Yu F X. Research of preparation and protective performance of Zn-Al alloy coating by low pressure cold spray technology [D]. Qingdao: Qingdao University of Science & Technology, 2014
4 于福旭. 低压冷喷涂锌铝合金涂层制备及防护性能研究 [D]. 青岛: 青岛科技大学, 2014
5 Bala N, Singh H, Karthikeyan J, et al. Cold spray coating process for corrosion protection: a review [J]. Surf. Eng., 2014, 30(6): 414
6 Bai Y, Wang Z H, Li X B, et al. Corrosion behavior of Al(Y)-30%Al2O3 coating fabricated by low pressure cold spray technology [J]. Acta Metall. Sin., 2019, 55(10): 1338
6 白 杨, 王振华, 李相波 等. 低压冷喷涂制备 Al(Y)-30%Al2O3涂层及其海水腐蚀行为 [J]. 金属学报, 2019, 55(10): 1338
7 Wu M J. Chromium and human health [J]. Trace Elem. Heal. Res., 2014, 31(4): 72
7 吴茂江. 铬与人体健康 [J]. 微量元素与健康研究, 2014, 31 (4): 72
8 Gao Z Q, Zhang D W, Li X G, et al. Current status, opportunities and challenges in chemical conversion coatings for zinc [J]. Colloids Surf. A Physicochem. Eng. Aspects., 2018, 546: 221
9 Wu X X, Kong G, Sun Z W, et al. Preparation and corrosion performance of lanthanum nitrate conversion coating on hot- dip galfansteel [J]. Chin. J. Mater. Res., 2016, 30(4): 269
9 吴晓晓, 孔 纲, 孙子文 等. 热浸镀Galfan表面镧盐转化膜的生长和耐腐蚀性能的研究 [J]. 材料研究学报, 2016, 30(4): 269
doi: 10.11901/1005.3093.2015.435
10 Huang X L, Huang C Z, Ding Y H, et al. Environmental protection chromium free passivation process for new energy power battery cases [J]. Electroplat. Finish., 2022, 41(21): 1531
10 黄兴林, 黄朝志, 丁运虎 等. 新能源动力电池壳环保无铬钝化工艺 [J]. 电镀与涂饰, 2022, 41(21): 1531
11 Golabadi M, Aliofkhazraei M, Toorani M, et al. Corrosion and cathodic disbondment resistance of epoxy coating on zinc phosphate conversioncoatingcontainingNi2+and Co2+ [J].J. Ind. and Eng. Chem., and Eng. Chem., 2016, 47: 154
12 Zhang S H, Kong G, Sun Z W, et al. Effect of formulation of silica- based solution on corrosion resistance of silicate coating on hot-dip galvanized steel [J]. Surf. Interface Anal., 2016, 48(3): 132
13 Ramanauskas R, Girčienė O, Gudavičiūtė L, et al. The interaction of phosphate coatings on a carbon steel surface with a sodium nitrite and silicate solution [J]. Appl. Surf. Sci., 2015, 327: 131
14 Cui G, Bi Z X, Zhang R Y, et al. A comprehensive review on graphene-based anti-corrosive coatings [J]. Chem. Eng. J., 2019, 373: 104
doi: 10.1016/j.cej.2019.05.034
15 Tian Y Q, Wang W H, Zhong L, et al. Investigation of the anticorrosion properties of graphene oxide-modified waterborne epoxy coatings for AA6061 [J]. Prog. Org. Coat., 2022, 163: 106655
16 Xu Q Y, Wang H X, Jiang R. Formation and corrosion resistance of titanium containing conversion film on hot-dip galvanized steel [J]. Chin. J. Mater. Res., 2014, 28(7): 521
doi: 10.11901/1005.3093.2014.123
16 许乔瑜, 王海霞, 姜 瑞. 热浸镀锌层钛盐转化膜的制备和耐蚀性能 [J]. 材料研究学报, 2014, 28(7): 521
doi: 10.11901/1005.3093.2014.123
17 Ooij W, Zhu D. Electrochemical impedance spectroscopy of bis-(triethoxysilypropyl) tetrasulfide on Al 2024-T3 substrates [J]. Corrosion: J. Sci. Engin., 2001, 57(5): 413
18 Zhu Yuqiao. Study on green passivation and Corrosion resistance of galvanized sheet [D]. Zhenjiang: Jiangsu University of Science and Technology, 2010
18 朱玉巧. 镀锌板绿色钝化及其耐蚀性能研究 [D]. 镇江: 江苏科技大学, 2010
19 Yun T H, Park J H, Kim J, et al. Effect of the surface modification of zinc powders with organosilanes on the corrosion resistance of a zinc pigmented organic coating [J]. Prog. Org. Coat., 2014, 77 (11): 1780
20 Behgam R, Mahdavian M, Ramazani A, Fabrication of hollow carbon spheres doped with zinc cations to enhance corrosion protection of organosilane coatings [J]. Surf. Interfaces., 2020, 21: 1
21 Calderon J C, Koch L, Bandl C, et al. Multilayer coatings based on the combination of perfluorinated organosilanes and nickel films for injection moulding tools[J]. Surf. Coat. Technol., 2020, 399: 1
22 Zhu D Q, Ooij J W. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilylpropyl]amine [J]. Electrochim. Acta, 2004, 49(07): 1113
23 Yang T, Chen W G, Li X, et al. Environment-friendly and chromium-free passivation of copper and its alloys [J]. Mater. Today. Commun., 2021, 29: 1
24 Koltsov A, Cornu M J. Loison D. Characterization by different analytical techniques of SiO2 and silane thin films deposited on rough hot-dip galvanized steel surfaces [J]. Surf. Coat. Technol., 2012, 206: 2759
25 Wang H, Li S Y. Galvanized steel surface preparation and properties of the silane film study [J]. J. Sur. Technol., 2016, 45(10): 168
25 王 华, 李淑英. 镀锌钢板表面硅烷膜的制备及性能研究 [J]. 表面技术, 2016, 45(10): 168
26 Zhang Z H, Ye P F, Xu L P, et al. Composite passivation film of inorganic components and organosilane on hot galvanized sheet Surface [J]. Surf. Technol., 2013, 42(2): 14
26 张振海, 叶鹏飞, 徐丽萍 等. 热镀锌板表面无机组分与有机硅烷复合钝化膜 [J]. 表面技术, 2013, 42(2): 14
27 Egli W, Disarli A R, Seré P R, et al. Preparation and characterization of silanes films to protect electrogalvanized steel [J]. J. Mater. Eng. Perform. 2018, 27(3): 1194.
28 Ma Q G. Preparation and film forming performance of silane treatment agent for galvanized sheet surface [D]. Beijing: General Institute of Mechanical Science Research, 2017
28 马启国. 镀锌板表面硅烷处理剂的制备及其成膜性能研究 [D]. 北京: 机械科学研究总院, 2017
29 Mu J J, Li L J, Yao H R, et al. Preparation of PUF/PANI-CO double-wall microcapsules and anti-corrosion properties of modified water-based epoxy coating [J]. Fine Chem., 2024, 1
29 穆建立, 李丽娟, 姚红蕊 等. PUF/PANI-CO双壁微胶囊的制备及改性水性环氧涂层的防腐性能 [J]. 精细化工, 2024, 1
30 Peng C. Study on Environmental protection silane composite passivation film of galvanized sheet and its corrosion resistance [D]. Harbin: Harbin Engineering University, 2022
30 彭 闯. 镀锌板环保型硅烷复合钝化膜研制及其耐蚀性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2022
31 Chen C, Feng J, Zhang X Y, et al. Modification of amphiphilic Janus particles with cobalt Phthalocyanine for photocatalytic degradation of dyes at emulsion interface [J]. Fine Chem. Indust., 2023, 40(11): 2403
31 陈 晨, 冯 军, 张馨予 等. 钴酞菁修饰两亲性Janus颗粒用于乳液界面光催化染料降解 [J]. 精细化工, 2023, 40(11): 2403
32 Liu L R, Zhou Y T, Li Q P, et al. Effects of surface modification and heat treatment on the storage and application properties of waterborne zinc-based paint [J]. Coatings, 2023, 13(3): 652
33 Liu Y, Su X L, Luo F, et al. Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti3 SiC2 /epoxy resin coating [J]. J. Mater. Sci. Mater. Electron., 2018, 29(3): 2500
34 Liu Z P, Ma C, Zhang J, et al. High mechanical strength superhydrophobic colored sand prepared by a low-temperature strategy [J]. J. Mater. Sci. Technol., 2024, 194: 203
doi: 10.1016/j.jmst.2024.01.038
35 Li Q P, Liu L R, Zhang L, et al. Preparation and properties of water-based zinc coating [J]. Mater. Rev., 2023, 37(11): 245
35 李庆鹏, 刘利冉, 张 亮 等. 水性锌基涂镀涂层的制备及性能研究 [J]. 材料导报, 2023, 37(11): 245
36 Kong G, Zhang S H, Sun Z W, et al. Effect of particle size of silica powder on preparation of silicate conversion film [J]. Chin. J. Mater. Res., 2014, 28(6): 462
36 孔 纲, 张双红, 孙子文 等. 二氧化硅粉体粒度对硅酸盐转化膜制备的影响 [J]. 材料研究学报, 2014, 28(6): 462
37 Akhtar S, Matin A, Kumar A M, et al. Enhancement of anticorrosion property of 304 stainless steel using silane coatings [J]. Appl. Surf. Sci. 2018, 440(1): 1286
[1] 李红蕾, 刘闯, 卢政伟, 褚天义, 陈育秋, 姜肃猛, 宫骏, 裴志亮. Ni-Al2O3/Diamond复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 314-320.
[2] 彭怡和, 欧宝立, 彭勇洁, 温乜一, 程天宇, 陈迪名. CeO2-GO/EP防腐复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 259-271.
[3] 王静, 何文政, 杨爽, 耿闻, 任荣, 熊需海. 氩气等离子体处理对芳Ⅲ/环氧复合材料界面性能的影响[J]. 材料研究学报, 2025, 39(3): 185-197.
[4] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[5] 朱国豪, 陈平, 徐计雷, 孙慧敏. 低聚聚酰亚胺(SPI)改性的聚酰亚胺(PI)固化物的制备和性能[J]. 材料研究学报, 2025, 39(2): 103-112.
[6] 韩珩, 李洪峤, 李鹏, 马国政, 郭伟玲, 刘明. 冷喷涂温度对Ni-Ti3AlC2复合涂层摩擦学性能的影响[J]. 材料研究学报, 2025, 39(1): 44-54.
[7] 黄迪, 牛云松, 李帅, 董志宏, 鲍泽斌, 朱圣龙. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理[J]. 材料研究学报, 2024, 38(9): 691-700.
[8] 李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
[9] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[10] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[11] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[12] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[13] 闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.
[14] 王慧明, 王金龙, 李应举, 张宏毅, 吕晓仁. Al基复合涂层干摩擦磨损的有限元分析[J]. 材料研究学报, 2024, 38(12): 941-949.
[15] 陈继弘, 王永利, 熊良银, 宋立新. 316L钢表面低活性Fe-Al涂层的制备[J]. 材料研究学报, 2024, 38(11): 801-810.