Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (11): 837-848    DOI: 10.11901/1005.3093.2024.176
  研究论文 本期目录 | 过刊浏览 |
Mo-Fe基非晶合金丝材对偶氮染料的降解性能
贺旺, 陈亚楠, 唐梅芳, 高文郡, 苏辰, 郭胜锋()
西南大学材料与能源学院 重庆 400715
Research on the Degradation Performance of Azo Dyes for MoFe-based Amorphous Alloy Wires
HE Wang, CHEN Yanan, TANG Meifang, GAO Wenjun, SU Chen, GUO Shengfeng()
School of Materials and Energy, Southwest University, Chongqing 400715, China
引用本文:

贺旺, 陈亚楠, 唐梅芳, 高文郡, 苏辰, 郭胜锋. Mo-Fe基非晶合金丝材对偶氮染料的降解性能[J]. 材料研究学报, 2024, 38(11): 837-848.
Wang HE, Yanan CHEN, Meifang TANG, Wenjun GAO, Chen SU, Shengfeng GUO. Research on the Degradation Performance of Azo Dyes for MoFe-based Amorphous Alloy Wires[J]. Chinese Journal of Materials Research, 2024, 38(11): 837-848.

全文: PDF(14664 KB)   HTML
摘要: 

用熔融纺丝法制备Mo-Fe基(Mo51Co17Fe17B15和Mo51Fe34B15)非晶合金丝材,研究了这两种非晶丝材对结晶紫溶液的降解性能及其机理。结果表明,Mo51Co17Fe17B15和Mo51Fe34B15非晶合金丝材能彻底降解pH值为2~9的结晶紫溶液。Mo51Fe34B15的降解效率比Mo51Co17Fe17B15的高,为了达到相同的降解效率前者所需时间为后者的二分之一。与Mo51Co17Fe17B15丝材相比,Mo51Fe34B15非晶合金丝材的自腐蚀电位较高、腐蚀电流密度较低。这两种丝材优异的耐腐蚀性能和表面较高的Fe2+含量,有利于为催化降解提供大量的电子转移基础,适宜的耐腐蚀性能和较高的电子转移性能是其具有优异降解性能的关键原因。

关键词 金属材料钼基非晶合金非晶丝材染料废水催化降解    
Abstract

Mo-based amorphous alloys show excellent degradation performance and thermal stability in the field of dye wastewater degradation, and have efficient catalytic reactivity over a wide pH range. This paper successfully prepared novel MoFe-based (Mo51Co17Fe17B15 and Mo51Fe34B15) amorphous alloy wires using the melt-spinning method. This further enhanced the catalytic activity of Mo-based amorphous alloys in extremely acidic media, and investigated the degradation performance of the two amorphous wire materials towards crystal violet solution and its reaction mechanism. The results show that Mo51Co17Fe17B15 and Mo51Fe34B15 amorphous alloy wires can completely degrade crystal violet solution with pH 2~9. The degradation efficiency of Mo51Fe34B15 is higher than that of Mo51Co17Fe17B15, and the time required for the former to reach the same degradation degree is only 1/2 of the latter. In addition, the Mo51Fe34B15 amorphous alloy wires have a higher self-corrosion potential and lower corrosion current density, superior corrosion resistance and a higher surface Fe2+ content, which is conducive to providing a large number of electron transfer basis for the catalytic degradation process. The suitable corrosion behavior and faster electron transfer ability are the key reasons for its superior degradation performance.

Key wordsmetallic materials    Mo-based amorphous alloy    amorphous alloy wires    dye wastewater    catalytic degradation
收稿日期: 2024-04-17     
ZTFLH:  TQ426.83  
基金资助:国家自然科学基金(52071276);中央高校基本科研业务费专项基金(SWU-XDJH202313)
通讯作者: 郭胜锋,教授,sfguo@swu.edu.cn,研究方向为非晶合金、高熵合金以及生物医用金属
Corresponding author: GUO Shengfeng, Tel: 13500330725, E-mail: sfguo@swu.edu.cn
作者简介: 贺 旺,女,1995年生,硕士
图1  Mo51Co17Fe17B15和Mo51Fe34B15非晶合金丝材的XRD谱和DSC曲线
图2  Mo51Co17Fe17B15和Mo51Fe34B15非晶合金丝材降解结晶紫溶液的紫外-可见吸收光谱
图3  Mo51Co17Fe17B15和Mo51Fe34B15非晶合金丝材降解不同pH值的结晶紫溶液的归一化浓度变化(室温,20 × 10-6结晶紫溶液,0.1 mol/L H2O2)以及不同非晶合金催化剂用于降解偶氮染料废水适用的pH值和反应速率常数kobs[24~30]
图4  Mo51Co17Fe17B15和Mo51Fe34B15非晶合金丝材在不同温度下降解结晶紫溶液的归一化浓度变化;反应速率常数kobs以及反应活化能Ea (pH = 2,20 × 10-6结晶紫溶液,0.1 mol/L H2O2)
图5  Mo51Co17Fe17B15和 Mo51Fe34B15非晶合金丝材不同H2O2添加量降解结晶紫溶液的归一化浓度变化和反应速率常数kobs (303 K,pH = 2,20 × 10-6结晶紫溶液)
图6  Mo51Co17Fe17B15和 Mo51Fe34B15非晶合金丝材降解不同初始浓度结晶紫溶液的归一化浓度变化以及反应速率常数kobs和降解效率(η = (1-Ct/C0) × 100%) (313 K,pH = 2,0.1 mol/L H2O2)
图7  Mo51Co17Fe17B15和Mo51Fe34B15非晶合金丝材的循环稳定性
图8  Mo51Co17Fe17B15和Mo51Fe34B15非晶合金在结晶紫溶液中的极化曲线和奈奎斯特图
图9  Mo51Co17Fe17B15和Mo51Fe34B15非晶合金丝材降解偶氮染料废水前后的表面形貌
图10  Mo51Co17Fe17B15和Mo51Fe34B15非晶合金丝材降解染料废水后的表面EDS能谱
图11  Mo51Co17Fe17B15和Mo51Fe34B15降解偶氮染料废水后非晶合金丝材表面的XPS谱
图12  Mo51Co17Fe17B15和Mo51Fe34B15非晶合金丝材降解结晶紫染料废水的机理示意图
1 Selvaraj V, Swarna Karthika T, Mansiya C, et al. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications [J]. J. Mol. Struct., 2021, 1224: 129195
2 Zhang C J, Chen H, Xue G, et al. A critical review of the aniline transformation fate in azo dye wastewater treatment [J]. J. Clean. Prod., 2021, 321: 128971
3 Wang Y, Zhang H, Chang N, et al. Preparation of acid-alkali modified coal fly ash adsorbent and its removal performance on dyes [J]. Chin. J. Mater. Res., 2023, 38(5): 379
3 王 琰, 张 昊, 常 娜 等. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能 [J]. 材料研究学报, 2023, 38(5): 379
4 Yu M X, Kuai L, Wang L, et al. Synthesis of N-doped hierarchical porous carbon and its adsorption capacity for acid orange 74 [J]. Chin. J. Mater. Res., 2021, 35(9): 667
doi: 10.11901/1005.3093.2020.427
4 余谟鑫, 蒯 乐, 王 亮 等. 吲哚基掺氮分级多孔炭的制备及其对酸性橙74的吸附性能 [J]. 材料研究学报, 2021, 35(9): 667
doi: 10.11901/1005.3093.2020.427
5 Zhang H, Li F, Chang N, et al. Preparation of carboxylic acid grafted starch adsorption resin and its dye removal performance [J]. Chin. J. Mater. Res., 2021, 35(6): 419
doi: 10.11901/1005.3093.2020.279
5 张 昊, 李 帆, 常 娜 等. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能 [J]. 材料研究学报, 2021, 35(6): 419
6 Zhang X Y, Zhang Q Y, Tang T, et al. Fabrication of composite material based on MOFs and its adsorption properties for methylene blue dyes [J]. Chin. J. Mater. Res., 2021, 35(11): 866
doi: 10.11901/1005.3093.2021.002
6 张向阳, 章奇羊, 汤 涛 等. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能 [J]. 材料研究学报, 2021, 35(11): 866
doi: 10.11901/1005.3093.2021.002
7 Zhang L C, Jia Z, Lyu F, et al. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects [J]. Prog. Mater. Sci., 2019, 105: 100576
8 Pei L F, Zhang X Y, Yuan Z Z. Application of Fe-based amorphous alloy in industrial wastewater treatment: a review [J]. J. Renew. Mater., 2022, 10(4): 969
9 Wang J Q, Liu Y H, Chen M W, et al. Rapid degradation of azo dye by Fe-based metallic glass powder [J]. Adv. Funct. Mater., 2012, 22(12): 2567
10 Xie S H, Xie Y L, Kruzic J J, et al. The pivotal role of boron in improving the azo dye degradation of glassy Fe-based catalysts [J]. ChemCatChem, 2020, 12(3): 750
11 Wang R W, Liu J, Gan Z H, et al. Crystallization kinetics of amorphous alloys Fe73.5Si13.5- x Ge x B9Cu1Nb3 (x = 3, 6) [J]. Chin. J. Mater. Res., 2014, 28(3): 204
11 汪汝武, 刘 静, 甘章华 等. Fe73.5Si13.5- x Ge x B9Cu1Nb3 (x = 3, 6)非晶合金的结晶动力学 [J]. 材料研究学报, 2014, 28(3): 204
doi: 10.11901/1005.3093.2013.603
12 Wang J M, Hu Q, Yang Y H, et al. Influence of Co and Ni on invar effect of (Fe71.2B24Y4.8)96Nb4 bulk metallic glass [J]. Chin. J. Mater. Res., 2018, 32(9): 691
12 王金苗, 胡 强, 严意宏 等. Co和Ni对(Fe71.2B24Y4.8)96Nb4块体非晶合金因瓦效应的影响 [J]. 材料研究学报, 2018, 32(9): 691
doi: 10.11901/1005.3093.2018.115
13 Chen F, Zhou Y, Chen Y N, et al. Fabrication of nano-porous Co by dealloying for supercapacitor and azo-dye degradation [J]. Chin. J. Mater. Res., 2020, 34(12): 905
doi: 10.11901/1005.3093.2020.443
13 陈 峰, 周 洋, 陈彦南 等. 脱合金制备纳米多孔Co及其超级电容器和对偶氮染料的降解性能 [J]. 材料研究学报, 2020, 34(12):905
14 Shen Y L, Li B G. Preparation of magnetic amino acid-functionalized aluminum alginate gel polymer and its super adsorption on azo dyes [J]. Chin. J. Mater. Res., 2022, 36(3): 220
doi: 10.11901/1005.3093.2021.163
14 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附 [J]. 材料研究学报, 2022, 36(3):220
doi: 10.11901/1005.3093.2021.163
15 Shi J L, Sheng M Q, Wu Q, et al. Preparation of electrode materials of amorphous Co-W-B/Carbon cloth composite and their electro-catalytic performance for electrolysis of water [J]. Chin. J. Mater. Res., 2020, 34(4): 263
doi: 10.11901/1005.3093.2019.397
15 施嘉伦, 盛敏奇, 吴 琼 等. 非晶Co-W-B/碳布复合电极材料的制备及其电解水催化性能 [J]. 材料研究学报, 2020, 34(4): 263
doi: 10.11901/1005.3093.2019.397
16 Zhang Z L, Wang S Q, Xu B L, et al. Electrocatalytic oxygen evolution performance of high entropy FeCoNiMoCr alloy thin film electrode [J]. Chin. J. Mater. Res., 2021, 35(3): 193
doi: 10.11901/1005.3093.2020.233
16 张泽灵, 王世琦, 徐邦利 等. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能 [J]. 材料研究学报, 2021, 35(3): 193
doi: 10.11901/1005.3093.2020.233
17 Wang J Q, Liu Y H, Chen M W, et al. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders [J]. Sci. Rep., 2012, 2(1): 418
18 Jia Z, Kang J, Zhang W C, et al. Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment [J]. Appl. Catal. B Environ., 2017, 204: 537
19 Tang M F, Lai L M, Ding D Y, et al. Rapid degradation of direct blue dye by Co-based amorphous alloy wire [J]. J. Non-Cryst. Solids, 2022, 576: 121282
20 Tang M F, Lai L M, Su C, et al. MoCoB metallic glass microwire catalysts for highly efficient and pH-universal degradation of wastewater [J]. npj Mater. Degrad., 2023, 7(1): 73
21 Lin B, Bian X F, Wang P, et al. Application of Fe-based metallic glasses in wastewater treatment [J]. Mater. Sci. Eng. B, 2012, 177(1): 92
22 Zhang C Q, Zhang H F, Lv M Q, et al. Decolorization of azo dye solution by Fe-Mo-Si-B amorphous alloy [J]. J. Non-Cryst. Solids, 2010, 356(33-34): 1703
23 Wang X F, Pan Y, Zhu Z R, et al. Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process [J]. Chemosphere, 2014, 117: 638
pmid: 25461929
24 Chen S Q, Yang G N, Luo S T, et al. Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposi-tion [J]. J. Mater. Chem. A, 2017, 5(27): 14230
25 Deng Z, Zhang C, Liu L. Chemically dealloyed MgCuGd metallic glass with enhanced catalytic activity in degradation of phenol [J]. Intermetallics, 2014, 52: 9
26 Hou L, Wang Q Q, Fan X D, et al. Effect of Co addition on catalytic activity of FePCCu amorphous alloy for methylene blue degradation [J]. New J. Chem., 2019, 43(16): 6126
27 Li Z K, Qin X D, Zhu Z W, et al. Cu-based metallic glass with robust activity and sustainability for wastewater treatment [J]. J. Mater. Chem. A, 2020, 8(21): 10855
28 Turnbull D. Under what conditions can a glass be formed? [J]. Contemp. Phys., 1969, 10(5): 473
29 Wang P, Bian X F, Li Y X. Catalytic oxidation of phenol in wastewater — A new application of the amorphous Fe78Si9B13 alloy [J]. Chin. Sci. Bull., 2012, 57(1): 33
30 Zhao B W, Zhu Z W, Qin X D, et al. Highly efficient and stable CuZr-based metallic glassy catalysts for azo dye degradation [J]. J. Mater. Sci. Technol., 2020, 46: 88
doi: 10.1016/j.jmst.2019.12.012
31 Zhang C Q, Zhang H F, Lv M Q, et al. Decolorization of azo dye solution by Fe-Mo-Si-B amorphous alloy [J]. J. Non-Cryst. Solids, 2010, 356(33-34): 1703
32 Zhang C Q, Zhu Z W, Zhang H F. Effects of the addition of Co, Ni or Cr on the decolorization properties of Fe-Si-B amorphous all-oys [J]. J. Phys. Chem. Solids, 2017, 110: 152
33 Yang C, Zhang C, Chen Z J, et al. Three-dimensional hierarchical porous structures of metallic glass/copper composite catalysts by 3D printing for efficient wastewater treatments [J]. ACS Appl. Mater. Interfaces, 2021, 13(6): 7227
[1] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[2] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[3] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[4] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[5] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[8] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[11] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[12] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[13] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[14] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[15] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.