Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (12): 881-892    DOI: 10.11901/1005.3093.2024.052
  研究论文 本期目录 | 过刊浏览 |
钛合金表面Si改性铝化物涂层制备及其高温氧化行为
刘国强1, 冯长杰1, 辛丽2(), 马天宇3, 常皓2, 潘钰璇2, 朱圣龙2
1 沈阳航空航天大学材料科学与工程学院 沈阳 110136
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 东北大学材料科学与工程学院 沈阳 110819
Preparation and High Temperature Oxidation Resistance of Si Modified Aluminide Coating on Titanium Alloy
LIU Guoqiang1, FENG Changjie1, XIN Li2(), MA Tianyu3, CHANG Hao2, PAN Yuxuan2, ZHU Shenglong2
1 School of Materials Science & Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science &Engineering, Northeastern University, Shenyang 110819, China
引用本文:

刘国强, 冯长杰, 辛丽, 马天宇, 常皓, 潘钰璇, 朱圣龙. 钛合金表面Si改性铝化物涂层制备及其高温氧化行为[J]. 材料研究学报, 2024, 38(12): 881-892.
Guoqiang LIU, Changjie FENG, Li XIN, Tianyu MA, Hao CHANG, Yuxuan PAN, Shenglong ZHU. Preparation and High Temperature Oxidation Resistance of Si Modified Aluminide Coating on Titanium Alloy[J]. Chinese Journal of Materials Research, 2024, 38(12): 881-892.

全文: PDF(28056 KB)   HTML
摘要: 

用多弧离子镀技术在钛合金表面沉积不同Si含量的Al-Si涂层并对其进行真空扩散退火处理,研究了Si含量对这种涂层的显微结构和高温抗氧化性能的影响。结果表明,这种Si改性扩散铝化物涂层具有层状结构,主要由TiAl3、TiAl2和TiAl等Ti-Al金属间化合物相以及Ti5Si3和Ti5Si4析出相组成,部分Si替位固溶在TiAl3中生成了Ti(Al,Si)3。在650℃循环氧化后Si改性铝化物涂层表现出优良的抗高温氧化性能;在750℃循环氧化,随着涂层中Si含量的提高涂层的抗高温氧化性能随之提高。

关键词 金属材料Si改性铝化物涂层钛合金高温氧化扩散    
Abstract

Al-Si coatings with different Si content were deposited on the surface of Ti-alloy Ti-6Al-4V by multi-arc ion plating, then which were subjected to vacuum heat treatment at 900oC for 1 h and thereby Si-modified aluminide coatings with gradually decreasing Al-content along the normal of coating inwards were acquired The aluminide coatings exhibited layered structure and were mainly composed of Ti-Al intermetallics including TiAl3, TiAl2, TiAl and precipitates including Ti5Si3 and Ti5Si4, and certain amount of Si atoms were dissolved in the TiAl3 as substitutes and formed Ti(Al, Si)3. The Si modified aluminide coatings showed excellent cyclic oxidation resistance at 650oC. It is worthy to note that at 750oC, the cyclic oxidation resistance of the aluminide coatings increased with the increasing of Si content.

Key wordsmetallic materials    Si modified aluminide coating    titanium alloy    high temperature oxidation    diffusion
收稿日期: 2024-01-22     
ZTFLH:  TG156  
基金资助:国家自然科学基金(52371085);兴辽英才计划(XLYC2002031)
通讯作者: 辛丽,研究员,xli@imr.ac.cn,研究方向为高温腐蚀与防护以及高温防护涂层
Corresponding author: XIN Li, Tel: 13664116162, E-mail: xli@imr.ac.cn
作者简介: 刘国强,男,1999年生,硕士生
图1  0Si、5.2Si、12.5Si和25.7Si涂层的XRD谱
图2  0Si、5.2Si、12.5Si和25.7Si涂层的表面形貌、截面形貌以及EDS截面元素分布
ZonesAlSiTiV
174.72-24.271.01
266.23-32.671.10
354.83-43.321.85
425.21-72.362.43
564.068.0126.321.61
665.445.8427.061.66
760.573.6434.091.70
852.091.7544.062.10
924.391.0072.092.52
1064.039.8724.691.41
1168.125.7825.260.84
1249.5511.3136.922.22
1346.532.9748.851.65
1427.480.9669.322.24
1564.479.3125.280.94
1660.8610.3127.181.65
1738.4723.6936.990.85
1811.5136.2849.572.64
1918.257.3972.252.11
表1  图2中标示区域的EDS成分
Reaction equationΔGθ / kJ·mol-1No.
1/3Ti + Al = 1/3TiAl3-36.039(1)
Ti + Al = TiAl-62.408(2)
5/3Ti + Si = 1/3Ti5Si3-196.733(3)
Ti + Si = TiSi-129.430(4)
1/2Ti + Si = 1/2TiSi2-81.628(5)
表2  在900℃真空退火过程中可能发生反应的标准Gibbs自由能
图3  TC4、0Si、5.2Si、12.5Si和25.7Si涂层在650℃的循环氧化动力学曲线
图4  在650℃循环氧化后试样的宏观形貌
图5  0Si、5.2Si、12.5Si和25.7Si涂层在650℃循环氧化300周期后的XRD谱
图6  涂层在650℃循环氧化300周期后表面和截面的SEM形貌
CoatingsOAlSiTiV
0Si49.9534.46-14.531.06
5.2Si54.1623.913.6417.101.19
12.5Si56.1720.136.3816.500.82
25.7Si55.7218.797.5916.960.94
表3  在650℃循环氧化300周期后0Si、5.2Si、12.5Si和25.7Si涂层氧化膜表面的EDS成分分析
图7  TC4、0Si、5.2Si、12.5Si和25.7Si涂层在750℃循环氧化动力学曲线
图8  在750℃循环氧化后试样的宏观照片
图9  0Si、5.2Si、12.5Si和25.7Si涂层在750℃氧化不同时间后的XRD谱
图10  涂层在750℃循环氧化后SEM表面和截面的形貌
图11  在750℃循环氧化300周期后涂层截面的EPMA元素分布
ZonesOAlSiTiV
141.2919.09-37.332.29
243.5237.20-18.520.76
35.3532.88-57.833.94
4-23.19-74.182.63
565.358.19-24.841.62
663.6528.75-6.940.66
715.5834.470.8046.592.56
8-20.91-76.372.72
961.2811.782.6523.211.08
1061.8019.314.9413.160.79
11-38.314.6354.172.89
12-21.970.5475.152.34
1365.7712.180.3520.371.33
1464.2922.594.138.690.30
15-42.426.1049.142.34
16-8.9431.6654.115.29
17-13.8519.9562.243.96
18-20.381.6275.772.23
表4  图10中标示区域的EDS成份分析
1 Peters M, Kumpfert J, Ward C H, et al. Titanium alloys for aerospace applications [J]. Adv. Eng. Mater., 2003, 5(6): 419
2 Veiga C, Davim J P, Loureiro A J R. Properties and applications of titanium alloys: a brief review [J]. Rev. Adv. Mater. Sci., 2012, 32: 133
3 Pushp P, Dasharath S M, Arati C. Classification and applications of titanium and its alloys [J]. Mater. Today: Proc., 2022, 54: 537
4 Cui C X, Hu B M, Zhao L C, et al. Titanium alloy production technology, market prospects and industry development [J]. Mater. Des., 2011, 32(3): 1684
5 Vaché N, Cadoret Y, Dod B, et al. Modeling the oxidation kinetics of titanium alloys: review, method and application to Ti-64 and Ti-6242s alloys [J]. Corros. Sci., 2021, 178: 109041
6 Berthaud M, Popa I, Chassagnon R, et al. Study of titanium alloy Ti6242S oxidation behaviour in air at 560 oC: effect of oxygen dissolution on lattice parameters [J]. Corros. Sci., 2020, 164: 108049
7 Satko D P, Shaffer J B, Tiley J S, et al. Effect of microstructure on oxygen rich layer evolution and its impact on fatigue life during high-temperature application of α/β titanium [J]. Acta Mater., 2016, 107: 377
8 Ebach-Stahl A, Eilers C, Laska N, et al. Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti-Al-Cr-Y coatings at 600 and 700 oC in air [J]. Surf. Coat. Technol., 2013, 223: 24
9 Chaia N, Cossu C M, Parrisch C J, et al. Growth kinetics of TiAl3 diffusion coating by pack cementation on beta 21-S [J]. J. Phase Equilib. Diffus., 2020, 41(3): 181
10 Das D K, Alam Z. Cyclic oxidation behaviour of aluminide coatings on Ti-base alloy IMI-834 at 750 oC [J]. Surf. Coat. Technol., 2006, 201: 3406
11 Oukati Sadeq F, Sharifitabar M, Shafiee Afarani M. Synthesis of Ti-Si-Al coatings on the surface of Ti-6Al-4V alloy via hot dip siliconizing route [J]. Surf. Coat. Technol., 2018, 337: 349
12 Alam Z, Das D K. Effect of cracking in diffusion aluminide coatings on their cyclic oxidation performance on Ti-based IMI-834 alloy [J]. Corros. Sci., 2009, 51(6): 1405
13 McMordie B G. Oxidation resistance of slurry aluminides on high temperature titanium alloys [J]. Surf. Coat. Technol., 1991, 49(1-3): 18
14 Chen C, Feng X M, Shen Y F. Oxidation behavior of a high Si content Al-Si composite coating fabricated on Ti-6Al-4V substrate by mechanical alloying method [J]. J. Alloys Compd., 2017, 701: 27
15 Cammarota G P, Casagrande A, Sambogna G. Effect of Ni, Si and Cr in the structural formation of diffusion aluminide coatings on commercial-purity titanium [J]. Surf. Coat. Technol., 2006, 201(1-2): 230
16 Yan W, Sun F J, Wang Q J, et al. Hot corrosion behavior of arc-ion plating Ti-Al-Cr(Si,Y) coatings on Ti60 alloy [J]. Acta Metall. Sin., 2009, 45(10): 1171
16 闫 伟, 孙凤久, 王清江 等. Ti60合金表面电弧离子镀Ti-Al-Cr(Si, Y)防护涂层的热腐蚀行为 [J]. 金属学报, 2009, 45(10): 1171
17 Li Z H, Chai L J, Qi L, et al. Laser-cladded Al-Cr-Ti ternary alloy coatings on Ti-4Al-2V alloy: specific microstructure and enhanced surface performance [J]. Surf. Coat. Technol., 2023, 452: 129073
18 Feng Y, Chen Z Y, Jiang S M, et al. Effect of a NiCrAlSiY coating on cyclic oxidation and room temperature tensile properties of Ti65 alloy plate [J]. Chin. J. Mater. Res., 2023, 37(7): 523
doi: 10.11901/1005.3093.2022.145
18 冯 叶, 陈志勇, 姜肃猛 等. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响 [J]. 材料研究学报, 2023, 37(7): 523
19 Zhang M M, Cheng Y X, Xin L, et al. Cyclic oxidation behaviour of Ti/TiAlN composite multilayer coatings deposited on titanium alloy [J]. Corros. Sci., 2020, 166: 108476
20 Li C G, Wang Y, Tian W, et al. Nanostructured Al2O3-TiO2 coatings for high-temperature protection of titanium alloy during ablation [J]. Mater. Charact., 2010, 61: 796
21 Xiao Z Q, Tan F T, Wang W, et al. Oxidation protection of commercial-purity titanium by Na2O-CaO-SiO2 and Na2O-CaO-Al2O3-SiO2 glass-ceramic coatings [J]. Ceram. Int., 2015, 41(1): 325
22 Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
23 Zhu G L, Shu D, Dai Y B, et al. First principles study on substitution behaviour of Si in TiAl3 [J]. Acta Phys. Sin., 2009, 58(suppl.1) : 210
23 祝国梁, 疏 达, 戴永兵 等. Si在TiAl3中取代行为的第一性原理研究 [J]. 物理学报, 2009, 58(): 210
24 Bulanova M, Tretyachenko L, Golovkova M, et al. Phase equilibria in the α-Ti-Al-Si region of the Ti-Si-Al system [J]. J. Phase Equilib. Diffus., 2004, 25(3): 209
25 Zhang K, Xin L, Lu Y L, et al. Improving oxidation resistance of γ-TiAl based alloy by depositing TiAlSiN coating: effects of silicon [J]. Corros. Sci., 2021, 179: 109151
26 Rao K P, Zhou J B. Characterization of mechanically alloyed Ti-Al-Si powder blends and their subsequent thermal stability [J]. Mater. Sci. Eng., 2002, 338A: 282
27 Li Y, Gu Q F, Luo Q, et al. Thermodynamic investigation on phase formation in the Al-Si rich region of Al-Si-Ti system [J]. Mater. Des., 2016, 102: 78
28 Kahrobaee Z, Palm M. Experimental investigation of Ti-Al-Si phase equilibria at 800~1200oC [J]. J. Alloys Compd., 2022, 924: 166223
29 Sujata M, Bhargava S, Sangal S. On the formation of TiAl3 during reaction between solid Ti and liquid Al [J]. J. Mater. Sci. Lett., 1997, 16: 1175
30 Li J. Effect of Si in al alloy on intermetallic compounds growth behavior during reaction between solid Ti and liquid Al [D]. Harbin: Harbin Institute of Technology, 2012
30 李 晶. Si对Ti/Al固液界面金属间化合物生长行为的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2012
31 Hu X Y, Li F G, Shi D M, et al. A design of self-generated Ti-Al-Si gradient coatings on Ti-6Al-4V alloy based on silicon concentration gradient [J]. J. Alloys Compd., 2020, 830: 154670
32 Chaze A M, Coddet C. Influence of silicon on the oxidation of titanium between 550 and 700 oC [J]. Oxid. Met., 1987, 27(1-2): 1
33 Vojtěch D, Bártová B, Kubatı́k T. High temperature oxidation of titanium-silicon alloys [J]. Mater. Sci. Eng., 2003, 361A(1-2) : 50
34 Ikuma Y, Shimada E, Sakano S, et al. Oxygen self-diffusion in cylindrical single-crystal mullite [J]. J. Electrochem. Soc., 1999, 146(12): 4672
35 Fielitz P, Borchardt G, Schmücker M, et al. Oxygen grain-boundary diffusion in polycrystalline mullite ceramics [J]. J. Am. Ceram. Soc., 2004, 87: 2232
36 Gorai P, Hollister A G, Pangan-Okimoto K, et al. Kinetics of oxygen interstitial injection and lattice exchange in rutile TiO2 [J]. Appl. Phys. Lett., 2014, 104: 191602
37 Maeda K, Suzuki S, Ueda K, et al. Experimental and theoretical study of the effect of Si on the oxidative behavior of Ti-6Al-4V alloys [J]. J. Alloys Compd., 2019, 776: 519
[1] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[5] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[8] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[14] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[15] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.