Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (12): 914-920    DOI: 10.11901/1005.3093.2016.395
  本期目录 | 过刊浏览 |
A356铝合金扫描式微弧氧化涂层的成膜过程及耐腐蚀性能*
夏伶勤,韩建民(),杨莎,杨智勇,李卫京
北京交通大学机械与电子控制工程学院 北京 100044
Growth Process of Scanning Microarc Oxidation Coatings on A356 Alloy and their Corrosion Resistance
Lingqin XIA,Jianmin HAN(),Sha YANG,Zhiyong YANG,Weijing LI
School of Mechanical Electric and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
引用本文:

夏伶勤,韩建民,杨莎,杨智勇,李卫京. A356铝合金扫描式微弧氧化涂层的成膜过程及耐腐蚀性能*[J]. 材料研究学报, 2016, 30(12): 914-920.
Lingqin XIA, Jianmin HAN, Sha YANG, Zhiyong YANG, Weijing LI. Growth Process of Scanning Microarc Oxidation Coatings on A356 Alloy and their Corrosion Resistance[J]. Chinese Journal of Materials Research, 2016, 30(12): 914-920.

全文: PDF(3852 KB)   HTML
摘要: 

采用扫描式微弧氧化(SMAO)技术在A356铝合金表面制备了陶瓷涂层。测定了反应过程中涂层的电压-时间、动力学生长曲线, 研究了涂层的显微组织、成分分布, 分析涂层的相组成及显微硬度分布, 并比较了氧化前后极化曲线的变化。结果表明, 在硅酸盐溶液中获得的涂层主要由α-Al2O3γ-Al2O3和莫来石组成, 涂层与基体呈现良好的冶金结合。与A356传统式微弧氧化(CMAO)涂层相比, SMAO涂层中α-Al2O3含量略多、孔隙率更低, 显微硬度更高。此外, 两种氧化处理之后, 铝合金的耐腐蚀能力均得到显著提高。

关键词 材料失效与防护铝合金扫描式微弧氧化陶瓷膜腐蚀性能    
Abstract

Al-alloy A356 was treated by scanning micro arc oxidation (SMAO) method. The voltage-time and coating thickness-time curves were recorded. The microstructure, composition,phase constituent and microhardness profile of coatings werecharacterized. The corrosion behavior of the composite was evaluated by polarization test. Results show that the coating deposited in silicate electrolyte consists of α-Al2O3, γ-Al2O3 and mullite. The coating and the substrate presented excellent metallurgical bonding. Compared with the common micro arc oxidation (CMAO) coatings on A356 alloy, the SMAO coating contained higher amount of α-Al2O3 phase withless porous, and possessed higher micro hardness. However, after treatment by either CMAO or SMAO, the corrosion resistance of A356 alloy was significantly improved.

Key wordsmaterials failure and protection    Al-alloy    scanning micro    arc oxidation    ceramic coating    corrosion resistance
收稿日期: 2016-07-02     
基金资助:* 国家自然科学基金51371022, 中央高校基本科研业务费专项资金2015JBM076, 中国铁路总公司科技研究开发计划课题2015008-C资助项目
图1  扫描式微弧氧化处理系统示意图
Elements Al Si Mg Mn Fe Cu Ti P
Bal. 7.23 0.332 0.001 0.112 0.001 0.128 <0.001
表1  A356铝合金的化学成分
图2  (a)SMAO(电极距离5、10 mm)和CMAO微弧氧化过程中电压-时间变化曲线; (b)为(a)的局部放大图
图3  电极距离5 mm时A356铝合金扫描式微弧氧化涂层生长曲线
O Na Al Si
A 49.65 1.23 40.59 8.53
B 50.69 1.67 39.36 8.28
C 34.5 2.22 39.12 24.16
D 53.97 2.03 34.18 9.82
表2  微弧氧化涂层表面元素组成
图4  A356合金扫描式微弧氧化陶瓷膜的表面形貌
图5  A356基体及涂层表面XRD图谱
图6  SMAO和CMAO涂层截面显微硬度分布
图7  A356合金微弧氧化截面照片
图8  A356基体及CMAO、SMAO的涂层在3.5% NaCl中的极化曲线
Ecorr/ V Icorr/Acm-2 ba/mV bc/mV Rp/Ωcm2
Substrate -0.76 3.2×10-7 5 286 6.67×103
SMAO -0.62 1.11×10-10 58 11 3.61×107
CMAO -0.75 1.18×10-10 29 71 7.59×107
表3  A356基体及CMAO、SMAO涂层的腐蚀电流密度
1 Markov G A, Markova G V, USSR Patent, 526961(1976)
2 WANG Yanqiu, WANG Yue, CHEN Paiming, SHAO Yawei, WANG Fuhui, Microstructure, corrosion and wear resistances of microarc oxidation coating on Al alloy 7075, Acta Metallurgica Sinica, 47(4), 455(2011)
2 (王艳秋, 王岳, 陈派明, 邵亚薇, 王福会, 7075铝合金微弧氧化涂层的组织结构与耐蚀耐磨性能,金属学报, 47(4), 455(2011))
3 CUI Xuejun, LI Xiaofei, LI Te, LIN Xiuzhou, Negative voltage on structure and corrosion resistance of micro-arc oxidation coating on AZ31B magnesium alloy, Journal of Chinese Society for Corrosion and Protection, 36(2), 137(2016))
3 (崔学军, 李晓飞, 李特, 林修洲, 负向电压对AZ31B镁合金表面微弧氧化膜结构和耐蚀性的影响, 中国腐蚀与防护学报, 36(2), 137(2016))
4 LI Yuhai, ZHANG Baibing, DONG Xuguang, WANG Shuai, Comparative study on corrosion resistance of micro arc oxidation ceram
5 ic coatings on Mg-Mn-Re alloy, Chinese Journal of Materials Research, 30(3), 235(2016)
5 (李玉海, 张白冰, 董旭光, 王帅, Mg-Mn-RE微弧氧化陶瓷膜层耐蚀性对比研究, 材料研究学报, 30(3), 235(2016))
5 Wu H, Zhang X, Geng Z, Yin Y, Hang R, Huang X, Yao X, Tang B, Preparation, antibacterial effects and corrosion resistant of porous Cu-TiO2 coatings, Applied Surface Science, 308, 43(2014)
6 Wang P, Li J P, Guo Yong C, WANG J, Yang Z, Liang M, The formation mechanism of the composited ceramic coating with thermal protection feature on an Al-12Si piston alloy via a modi?ed PEO process, Journal of Alloy and Compounds, 682, 357(2016)
7 Wen L, Wang Y, Jin Y, Liu B, Zhou Y, Sun D, Microarc oxidation of 2024 Al alloy using spraying polar and its influence on microstructure and corrosion behavior, Surface and Coatings Technology, 228, 92(2013)
8 WANG Yaming, HAN Xiaodong, GUO Lixin, OUYANG Jiahu, JIA Dechang, ZHOU Yu, Microarcoxidation process with spraying cathode applied to LY12 alloy, Transactions of Materials and Heat Treatment, 30(2), 121(2009)
8 (王亚明, 韩晓东, 郭立新, 欧阳家虎, 贾德昌, 周玉, LY12铝合金表面喷射式微弧氧化工艺研究, 材料热处理学报, 30(2), 121(2009))
9 LV Pengxiang, WEI Dongbo, GUO Chengbo, LI Zhaolong, DI Shichun, Study on scanning micro-arc oxidation technology applied to 2024 aluminum alloy, Journal of Inorganic Materials, 28(4), 381(2013)
9 吕鹏翔, 韦东波, 郭成波, 李兆龙, 狄士春, 2024铝合金表面扫描式微弧氧化工艺研究, 无机材料学报, 28(4), 381(2013))
10 Pogrebnjak A, Tyurin Y, The structure and properties of Al2O3 and Al coatings deposited by microarc oxidation on graphite substrates,Technical Physics, 49, 1064(2004)
11 Khromov V N, Kuznetsov J A, Novikov A N, Method for anodizing metals and alloys, Russian Patent, 2163272(1999)
12 XIA Lingqin, HAN Jianmin, CUI Shihai, YANG Zhiyong, LI Weijing, Growth law and properties of ceramic coatings on SiCp/A356 composite fabricated by micro-arc oxidation, Journal of Materials Engineering, 44(1), 40(2016)
12 (夏伶勤, 韩建民, 崔世海, 杨智勇, 李卫京, SiCp/A356复合材料微弧氧化陶瓷膜的生长规律与性能, 材料工程, 44(1), 40(2016))
13 XUE Wenbin, HUA Ming, SHI Xiuling, TIAN Hua, Growth kinetics of microarc oxidation films on cast aluminum alloy and their corrosion resistance, Journal of the Chinese Ceramic Society, 35(6), 731(2007)
13 (薛文斌, 华铭, 施修龄, 田华, 铸造铝合金微弧氧化膜的生长动力学及耐蚀性能, 硅酸盐学报, 35(6), 731(2007))
14 LI Junming, CAI Hui, XUE Xiaonan, JIANG Bailing, The outward-inward growth behavior of microarc oxidation coatings in phosphate and silicate solution, Mater. Lett., 64(19), 2102(2010)
15 Wang J H, Du M H, Han F Z, Yang J, Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys, Applied Surface Science, 292, 658(2014)
16 Stern M, Geary A L, Electrochemical polarization I. A theoretical analysis of the shape of polarization curves, Journal of the Electrochemical Society, 104(1), 56(1957)
17 WANG Yong, TIAN Ying, GUO Quanzong, GUO Xinghua,DU Keqin,WANG Fuhui, Effect of cathodic current density on compactness of micro arc oxidation film on LY12 al alloy, Journal of Chinese Society for Corrosion and Protection, 33(6), 475(2013)
17 (王勇, 田颖, 郭泉忠, 郭兴华, 杜克勤, 王福会, 阴极电流密度对LY12铝合金微弧氧化膜致密性的影响, 中国腐蚀与防护学报, 33(6), 475(2013))
[1] 蒋梦蕾, 代斌斌, 陈亮, 刘慧, 闵师领, 杨帆, 侯娟. 选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响[J]. 材料研究学报, 2023, 37(5): 353-361.
[2] 廖鸿宇, 贾咏馨, 苏睿明, 李广龙, 曲迎东, 李荣德. 回归时间对2024铝合金的组织和耐蚀性能的影响[J]. 材料研究学报, 2023, 37(4): 264-270.
[3] 聂敬敬, 龚政轩, 孙京丽, 杨斯达, 夏先朝, 徐爱杰. 2195-2219异种铝合金焊接接头的微观组织和性能[J]. 材料研究学报, 2023, 37(2): 152-160.
[4] 余聪, 陈乐平, 江鸿翔, 周全, 杨成刚. 深冷-时效复合处理对7075铝合金的显微组织和力学性能的影响[J]. 材料研究学报, 2023, 37(2): 120-128.
[5] 陈杰, 李红英, 周文浩, 张青学, 汤伟, 刘丹. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响[J]. 材料研究学报, 2022, 36(8): 617-627.
[6] 杨兵, 刘春忠, 高恩志, 孙巍, 刘停, 张洪宁, 朱明伟, 卢天倪. 铸态退火2024合金在不同温度下的变形行为[J]. 材料研究学报, 2022, 36(10): 730-738.
[7] 廖泽鑫, 李承波, 刘胜胆, 唐建国, 黄传演, 朱贤燕. 焊后时效对7046铝合金搅拌摩擦焊接头力学性能的影响[J]. 材料研究学报, 2021, 35(7): 543-552.
[8] 任延静, 张欣盟, 薛鹏, 倪丁瑞, 肖伯律, 马宗义. 6005A铝合金挤压型材搅拌摩擦焊接头的疲劳性能[J]. 材料研究学报, 2021, 35(4): 271-276.
[9] 杜邦登, 刘军, 王晓婉, 汪伟, 陈德敏. 热处理对Al-Mg-Ga-In-Sn合金微观结构和铝水反应的影响[J]. 材料研究学报, 2021, 35(1): 25-35.
[10] 杨梦, 李承波, 刘胜胆, 叶凌英, 唐建国, 廖泽鑫. 人工时效对7003/7046铝合金搅拌摩擦焊接头组织和力学性能的影响[J]. 材料研究学报, 2020, 34(7): 495-504.
[11] 王静, 徐国富, 李耀, 李芳芳, 黄继武, 彭小燕. 淬火冷却速率对6082铝合金力学性能的影响[J]. 材料研究学报, 2020, 34(5): 337-344.
[12] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[13] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 温度对6101铝合金导线拉伸性能的影响[J]. 材料研究学报, 2020, 34(10): 730-736.
[14] 陈显明, 潘清林, 范莹莹. Al-Mg-Sc-Ti合金中Al3(Scx,Ti1-x)粒子的析出行为[J]. 材料研究学报, 2020, 34(10): 737-743.
[15] 赵天佑, 郭二军, 冯义成, 赵思聪, 付原科, 王丽萍. 铸态和T6热处理Al-Si-Cu-Ni-Ce-Cr铸造耐热铝合金的组织和力学性能[J]. 材料研究学报, 2019, 33(8): 588-596.