Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (7): 495-504    DOI: 10.11901/1005.3093.2019.477
  研究论文 本期目录 | 过刊浏览 |
人工时效对7003/7046铝合金搅拌摩擦焊接头组织和力学性能的影响
杨梦1,2, 李承波1,2,3, 刘胜胆1,4(), 叶凌英1,2, 唐建国1,2, 廖泽鑫1,2
1.中南大学材料科学与工程学院 长沙 410083
2.中南大学 有色金属材料科学与工程教育部重点实验室 长沙 410083
3.广东和胜工业铝材股份有限公司 中山 528463
4.中南大学 轻质高强结构材料国防科技重点实验室 长沙 410083
Effect of Artificial Aging on Microstructure and Mechanical Properties of Friction Stir Welded Joint of 7003/7046 Al-alloys
YANG Meng1,2, LI Chengbo1,2,3, LIU Shengdan1,4(), YE Lingying1,2, TANG Jianguo1,2, LIAO Zexin1,2
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3.Guangdong Hoshion Industrial Aluminium Co. Ltd. , Zhongshan 528463, China
4.National Key Laboratory of Science and Technology for National Defence on High Strength Structural Materials, Central South University, Changsha 410083, China
引用本文:

杨梦, 李承波, 刘胜胆, 叶凌英, 唐建国, 廖泽鑫. 人工时效对7003/7046铝合金搅拌摩擦焊接头组织和力学性能的影响[J]. 材料研究学报, 2020, 34(7): 495-504.
Meng YANG, Chengbo LI, Shengdan LIU, Lingying YE, Jianguo TANG, Zexin LIAO. Effect of Artificial Aging on Microstructure and Mechanical Properties of Friction Stir Welded Joint of 7003/7046 Al-alloys[J]. Chinese Journal of Materials Research, 2020, 34(7): 495-504.

全文: PDF(17230 KB)   HTML
摘要: 

采用差示扫描量热分析、硬度、室温拉伸实验、背散射电子衍射和透射电子显微镜等手段研究了焊后人工时效对7003-7046异种铝合金搅拌摩擦焊接(FSW)接头的微观组织和力学性能的影响。结果表明:FSW接头后退侧(7046铝合金侧)的硬度明显高于前进侧(7003铝合金侧),两侧平均硬度的差约为30HV;人工时效后接头的硬度提高,两侧平均硬度的差增大到约50HV,接头的屈服强度提高,抗拉强度略有提高,伸长率几乎不变。根据时效前后FSW接头不同区域微观组织的特征,分析了接头力学性能变化的原因。

关键词 金属材料铝合金搅拌摩擦焊接焊后热处理微观组织力学性能    
Abstract

The effect of post-weld artificial aging on microstructure and mechanical properties of friction stir welded (FSW) joint of 7003-7046 dissimilar Al-alloys was investigated by means of differential scanning calorimetry, hardness test, room temperature tensile test, backscattered electron diffraction and transmission electron microscopy. The results show that the hardness is significantly higher on the retreating side (7046 Al-alloy side) than that of the advancing side (7003 Al-alloy side), and the average hardness difference between the two sides is about 30HV; After artificial aging, the hardness increases, the yield strength increases significantly, the tensile strength increases slightly, and the elongation has little change of the joint, while the hardness difference increases to about 50HV for the two sides. The reason has been discussed based on the microstructure of different regions of the FSW joint before and after artificial aging treatment.

Key wordsAl alloy    friction stir welding    post weld heat treatment    microstructure    mechanical property
收稿日期: 2019-10-15     
ZTFLH:  TG146  
基金资助:国家重点研发计划(2016YFB0300901);广东省中山市科技局重大专项(2016A1001)
作者简介: 杨梦,女,1992年生,硕士
AlloyZnMgCuMnCrZrTiSiFeAl
70035.560.620.270.120.190.120.020.050.12Bal.
70466.441.400.27< 0.01< 0.010.150.020.070.11Bal.
表1  7003和7046铝合金的化学成分
图1  制备FSW接头硬度测试和拉伸用试样的示意图
图2  7003-7046异种铝合金搅拌摩擦焊接头的宏观形貌
图3  母材区ND-TD截面的晶粒取向图
图4  AW接头热影响区、热机影响区和母材区的晶粒取向图
图5  NZ区域人工时效前后的TEM明场像及衍射花样
图6  人工时效前后接头前进侧各区域的TEM明场像和典型衍射花样
图7  人工时效前后接头后退侧各区域沿<001>Al方向的TEM明场像和典型衍射花样
图8  接头前进侧时效前后不同区域的DSC曲线
ZonesNatural agingArtificial aging
Area of peak I/J·g-1Area of peak II/J·g-1
AS (7003)RS (7046)AS (7003)RS (7046)
BM12.20±1.4715.82±1.5111.38±2.4414.70±1.87
HAZ9.92±1.5713.51±3.139.14±2.0412.03±0.54
TMAZ10.84±1.7315.79±3.489.72±2.1214.56±0.12
NZ11.71±1.7916.95±2.498.67±1.2815.33±0.95
表2  人工时效前后接头各区域析出相反应峰的面积
图9  接头后退侧时效前后不同区域的DSC曲线
图10  AW接头和AA接头的硬度曲线图
Materials conditionsTensile strength/MPaYield strength/MPaElongation/%
Natural aging7003-BM300.3±3.2179.2±3.523.2±2.3
7046-BM406.2±2.7289.5±1.817.8±1.7
7003-7046-joint324.5±1.8203.4±2.713.0±1.2
Artificial aging7003-BM331.4±3.6290.1±3.216.7±1.6
7046-BM505.7±1.4465.3±2.311.8±2.4
7003-7046-joint332.4±4.2264.6±1.612.8±3.6
表3  人工时效前后母材和FSW接头的室温拉伸性能
[1] Feng A H, Chen D L, Ma Z Y. Microstructure and cyclic deformation behavior of a friction-stir-welded 7075 Al alloy [J]. Metall. Mater. Trans., 2010, 41A: 957
[2] Sullivan A, Robson J D. Microstructural properties of friction stir welded and post-weld heat-treated 7449 aluminium alloy thick plate [J]. Mater. Sci. Eng., 2008, 478A: 351
[3] Wu Y L, Zheng Y, Liu S D, et al. Microstructure and mechanical properties of 7055 Al alloy sheet friction stir welded joint [J]. Journal of Central South University (Natural Science edition), 2015, 46: 2426
[3] (吴豫陇, 郑英, 刘胜胆等. 7055铝合金板材搅拌摩擦焊接头的组织与力学性能 [J]. 中南大学学报(自然科学版), 2015, 46: 2426)
[4] Jata K V. Friction stir welding of high strength aluminum alloys [J]. Mater. Sci. Forum., 2000, 331-337: 1701
doi: 10.4028/www.scientific.net/MSF.331-337
[5] Wang K S, Zhang X L, Wang X H, et al. Comparison of fatigue properties between friction stir welds and TIG welds for Al alloy [J]. Chinese Journal of Materials Research, 2009, 23: 73
[5] (王快社, 张小龙, 王训宏等. 搅拌摩擦与氩弧焊铝合金接头疲劳性能的比较 [J]. 材料研究学报, 2009, 23: 73)
[6] Kalemba-Rec I, Kopyściański M, Miara D, et al. Effect of process parameters on mechanical properties of friction stir welded dissimilar 7075-T651 and 5083-H111 aluminum alloys [J]. Int. J. Adv. Manuf. Technol., 2018, 97: 2767
doi: 10.1007/s00170-018-2147-y
[7] Wang H L, Zeng X H, Zhang X M, et al. Microstructure and mechanical property of friction stir weld joints of dissimilar Al-alloys 5083 and 6061 [J]. Chinese Journal of Materials Research, 2018, 32: 473
doi: 10.11901/1005.3093.2017.634
[7] (王洪亮, 曾祥浩, 张欣盟等. 5083和6061铝合金异种搅拌摩擦焊接接头的组织和性能 [J]. 材料研究学报, 2018, 32: 473)
doi: 10.11901/1005.3093.2017.634
[8] Padhy G K, Wu C S, Gao S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1
[9] Sharma C, Dwivedi D K, Kumar P. Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al-Zn-Mg alloy AA7039 [J]. Mater. Des., 2013, 43: 134
doi: 10.1016/j.matdes.2012.06.018
[10] Hamed J A. Effect of welding heat input and post-weld aging time on microstructure and mechanical properties in dissimilar friction stir welded AA7075-AA5086 [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1707
doi: 10.1016/S1003-6326(17)60193-6
[11] Safarbali B, Shamanian M, Eslami A. Effect of post-weld heat treatment on joint properties of dissimilar friction stir welded 2024-T4 and 7075-T6 aluminum alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1287
doi: 10.1016/S1003-6326(18)64766-1
[12] Lin H Q, Wu Y L, Liu S D. Impact of initial temper of base metal on microstructure and mechanical properties of friction stir welded AA 7055 alloy [J]. Mater. Charact., 2018, 146: 159
doi: 10.1016/j.matchar.2018.09.043
[13] Wang X J, Sun G P, Zhang J, et al. Effects of heat treatment after welding on friction stir welding joints of high-strength aluminum alloy [J]. Chinese Journal of Non-ferrous Metals, 2009, 19: 484
[13] (王希靖, 孙桂苹, 张杰等. 焊后热处理对高强铝合金搅拌摩擦焊接头的影响 [J]. 中国有色金属学报, 2009, 19: 484)
[14] Sivaraj P, Kanagarajan D, Balasubramanian V. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy [J]. Def. Technol., 2014, 10: 1
[15] Zhang H J, Luo S H, Xu W. Influence of welding speed on zigzag line feature and tensile property of a friction-stir-welded Al-Zn-Mg aluminum alloy [J]. J. Mater. Eng. Perform., 2019, 28: 1790
doi: 10.1007/s11665-019-03888-5
[16] Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium [J]. Acta Mater., 2003, 51: 713
doi: 10.1016/S1359-6454(02)00449-4
[17] Kamp N, Reynolds A P, Robson J D. Modelling of 7050 aluminium alloy friction stir welding [J]. Sci. Technol. Weld. Join., 2013, 14: 589
[18] Li G H, Zhou L, Luo S F, et al. Effect of self-reacting friction stir welding on microstructure and mechanical properties of Mg-Al-Zn alloy joints [J]. J. Manuf. Process., 2019, 37: 1
doi: 10.1016/j.jmapro.2018.11.003
[19] Karaaslan A, Kaya I, Atapek H. Effect of aging temperature and of retrogression treatment time on the microstructure and mechanical properties of alloy AA 7075 [J]. Met. Sci. Heat. Treat., 2007, 49: 443
doi: 10.1007/s11041-007-0083-9
[20] Tang J G, Chen H, Zhang X M, et al. Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy [J]. Trans. Nonferr. Met. Soc., 2012, 22: 1255
doi: 10.1016/S1003-6326(11)61313-7
[21] Peng X Y, Li Y, Liang X P, et al. Precipitate behavior and mechanical properties of enhanced solution treated Al-Zn-Mg-Cu alloy during non-isothermal ageing [J]. J. Alloys Compd., 2018, 735: 964
doi: 10.1016/j.jallcom.2017.11.178
[22] Jiang J T, Tang Q J, Yang L, et al. Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties [J]. J. Mater. Process. Technol., 2016, 227: 110
doi: 10.1016/j.jmatprotec.2015.07.018
[23] Liu S D, Li C B, Han S Q, et al. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy [J]. J. Alloys Compd., 2015, 625: 34
doi: 10.1016/j.jallcom.2014.10.195
[24] Xu X S, Zheng J X, Li Z, et al. Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: atomic-scale HAADF-STEM investigation [J]. Mate. Sci. Eng., 2017, 691: 60
[25] Yang W C, Ji S X, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of ƞ' precipitate [J]. Mater. Des., 2015, 85: 752
doi: 10.1016/j.matdes.2015.06.183
[26] Srivatsan T S, Sriram S, Veeraraghavan D, et al. Microstructure, tensile deformation and fracture behaviour of aluminium alloy 7055 [J]. J. Mater. Sci., 1997, 32: 2883
doi: 10.1023/A:1018676501368
[27] Zhao Z K, Sun Q Z, Zhang P Q, et al. Effect of zinc content on the ageing behavior of Al-Zn-Mg-Cu-Li alloys [J]. Mater. Sci. Forum., 2008, 575-578: 1093
doi: 10.4028/www.scientific.net/MSF.575-578
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.