Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (12): 955-960    DOI: 10.11901/1005.3093.2015.12.955
  本期目录 | 过刊浏览 |
复杂不锈钢叶轮熔模铸造工艺的优化
赵健1(),衣春雷2
1. 山东科技大学材料科学与工程学院 青岛 266590
2. 山东科技大学国家大学科技园 青岛 266590
Optimization of Investment Casting Process for Stainless Steel Impeller with Complicated Geometry
Jian ZHAO1,*(),Chunlei YI2
1. School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. Science and Technology Parks, Shandong University of Science and Technology, Qingdao 266590, China
引用本文:

赵健,衣春雷. 复杂不锈钢叶轮熔模铸造工艺的优化[J]. 材料研究学报, 2015, 29(12): 955-960.
Jian ZHAO, Chunlei YI. Optimization of Investment Casting Process for Stainless Steel Impeller with Complicated Geometry[J]. Chinese Journal of Materials Research, 2015, 29(12): 955-960.

全文: PDF(4367 KB)   HTML
摘要: 

不锈钢叶轮的形状复杂且壁薄, 使熔模铸造不锈钢叶轮铸件出现缩孔缩松及浇不足等缺陷。这些缺陷与铸件的充型和凝固过程密切相关。本文使用ProCast软件数值模拟研究叶轮的充型及凝固过程, 并将结果与实验进行了比较。结果表明: 浇注温度为1550℃、浇注速度为0.75 m/s有利于叶轮铸件的充填, 可避免浇不足缺陷。适当的铸造温度和铸造速度仍无法避免在叶轮铸件内产生缩孔缩松缺陷。根据叶轮铸件的结构特点, 采用在叶轮铸件中空处施加冷铁的方式可以消除铸件中的缩孔缩松缺陷, 当冷铁高度为叶轮铸件内部高度的1/3时, 去除缩松缩孔缺陷的效果最明显。

关键词 材料合成与加工工艺熔模铸造不锈钢叶轮充型凝固铸造缺陷    
Abstract

Due to the complicated geometry and thin wall of the stainless steel impeller, during the investment casting process, some casting defects such as shrinkage porosity and filling shortage are usually produced, which have a close relationship with the filling and solidification process. So, the software ProCast was used to study the filling and solidification process of impeller and the numerical simulation results were compared with the experimental results in this paper. The following results can be acquired: 1. when the pouring temperature is 1550℃ and the casting speed is 0.75 m/s, the investment casting impeller can be filled to avoid the filling shortage defect; 2. although the appropriate pouring temperature and casting speed can avoid the filling shortage defect, but it can not avoid the shrinkage porosity defects in the impeller casting; 3. to pre-place certain cold iron in the middle of the impeller casting mold according to its structural characteristics can eliminate the shrinkage porosity defects. When the height of the pre-placed cold iron is 1/3 of the height of the inner cavity of impeller mold, the effectiveness in elimination the defects in the castings is the best thereby a high quality impeller can be acquired.

Key wordssynthesizing and processing techniques    investment casting    stainless steel impeller    filling and solidification    casting defects
收稿日期: 2014-09-26     
Density/kg/m3 Liquidus temperature/℃ Solidus temperature/℃ Pouring temperature/℃ Casting speed/m/s
7900 1454 1399 1500~1600 0.5~1.25
表1  304不锈钢热物性及工艺参数
Temperature/℃ Specific heat/KJ/kgK Thermal conductivity/W/mK Viscosity/Pa?s
100 0.53 17.8 2.0
500 0.58 25.3 1.5
1000 0.65 30.3 1.0
1500 0.68 33.8 0.5
表2  304不锈钢热物性参数
图1  熔模铸造叶轮的几何和有限元模型
图2  不同浇注速度铸件内的充填
图3  不同浇注温度铸件内的充填
图4  叶轮铸件的凝固和缩松缩孔缺陷图
图5  冷铁的不同放置方式
图6  施加冷铁后铸件的凝固云图及缩松缩孔缺陷分布图
图7  改进工艺后熔模铸造叶轮铸件图
1 YANG Bingbing, The processes research on large complicated stainless steel impeller by melting modules-sand mould composite casting, PhD Dissertation, Xi'an University of Technology (2007)
1 (杨兵兵, 大型复杂不锈钢叶轮熔模-砂型复合铸造工艺的研究, 博士学位论文, 西安理工大学(2007))
2 JIANG Buju, Investment casting, (Beijing, Machinery Industry Press, 2004)p.309
2 (姜不居, 熔模精密铸造, (北京, 机械工业出版社, 2004)p.309)
3 LI Feng, ZHENG Fusheng, WANG Gang, DAI Penglong, ZHANG Jie, Numerical simulation of solidification Process for Impeller Investment Casting Based on ProCAST, Hot Working Technology, 42(7), 55(2013)
3 (李峰, 郑福生, 王刚, 戴朋龙, 张洁, 基于ProCAST的叶轮熔模铸造凝固过程数值模拟, 热加工工艺, 42(7), 55(2013))
4 SHI Yuanjin, ZHANG Zhanchang, LIU Rui, Shrinkage defects improvement of steel casting investment casting based on flow field optimization, Foundry, 163(9), 910(2014)
4 (石远进, 张战场, 刘睿, 基于流场优化的熔模铸钢件缩孔缺陷改善, 铸造, 163(9), 910(2014))
5 YAN Kai, LIU Hanwu, DU Yunhui, ZHANG Hui, Dynamic Simulation of the Filling Process and Temperature FieldAnalysis of Al-4%Cu Alloy in Solidification, Foundry Technology, 30(2), 510(2009)
5 (严恺, 刘汉武, 杜云慧, 张慧, Al-4%Cu合金凝固充型过程动态模拟及温度场分析, 铸造技术, 30(2), 510(2009))
6 YAO Binye, MAO Hongkui, XU Hong, MENG Xianbao, Status and development trend of numerical simulation of flow field in casting process, Foundry Technology, 33(10), 1211(2012)
6 (姚宾叶, 毛红奎, 徐宏, 孟宪宝, 铸造充型过程流场数值模拟现状及发展趋势, 铸造技术, 33(10), 1211(2012))
7 XIONG Shoumei, XU Qingyan, KANGJinwu, Casting process simulation technology, (Beijing, Machinery Industry Press, 2004)p.39
7 (熊守美, 许庆颜, 康进武, 铸造过程模拟仿真技术, (北京, 机械工业出版社, 2004)p.39)
8 DENG Kang, SUN Huanchun, Treatment of latent heat in calculations for solidification of heavy castings, Journal of Dalian University of Technology, 32(5), 531(1992)
8 (邓康, 孙焕纯, 大型铸件凝固计算中的潜热处理方法, 大连理工大学学报, 32(5), 531(1992))
9 LI Donghui, GAO Yunbao, XIN Qibin, QiuYiqing, LIU Xianghua, WANG Guodong, The processing method and application study for latent heat releases in alloy castings, Foundry, 53(12), 1005(2004)
9 (李东辉, 高云宝, 辛启斌, 邱以清, 刘相华, 王国栋, 铸件凝固潜热的处理方法与应用研究, 铸造, 53(12), 1005(2004))
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[11] 王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
[12] 刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
[13] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[14] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.
[15] 唐昭辉, 丁学勇, 董越, 刘程宏, 魏国. w(MgO)对高钛高炉渣黏流特性的影响*[J]. 材料研究学报, 2016, 30(6): 443-447.