Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (10): 794-800    DOI: 10.11901/1005.3093.2019.164
ARTICLES Current Issue | Archive | Adv Search |
Solution Temperature Sensitivity for Primary α-Phase Volume Fraction of Ti750 Alloys
CHEN Chaoyang1,2,CHEN Zhiyong1,ZHU Shaoxiang1,LIU Jianrong1(),WANG Qingjiang1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

CHEN Chaoyang,CHEN Zhiyong,ZHU Shaoxiang,LIU Jianrong,WANG Qingjiang. Solution Temperature Sensitivity for Primary α-Phase Volume Fraction of Ti750 Alloys. Chinese Journal of Materials Research, 2019, 33(10): 794-800.

Download:  HTML  PDF(6505KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Solution temperature (T) sensitivity for the volume fraction (V) of primary α-phase in the α+β-phase field of two Ti750 alloys with 0.25 Mo and 1.0 Mo (mass fraction%) were comparatively investigated. The results show that the variation of volume fraction of primary α-phase with temperature seems to follow a negative power function curve, with a slow initial reduction and then rapid reduction with the increase of temperature for both alloys. The V-T curve for the alloy with 0.25% Mo showed a steeper slope compared with the alloy with 1.0% Mo, indicating that with the increase of Mo addition, the decrease of solution temperature sensitivity may emerge for the volume fraction of the primary α-phase in the α+β-phase field of Ti750 alloys. In the two alloys with the same volume fraction of primary α-phase, the Al concentration in the primary α-phase of the alloy with 1.0% Mo is higher than that of alloy with 0.25 % Mo. In other word, Mo indirectly increases the thermodynamic stability of the primary α-phase and thus reduces the temperature sensitivity of the volume fraction of α-phase in Ti750 alloy.

Key words:  metallic materials      titanium alloy      solution temperature      EPMA      primary α-phase      sensitivity     
Received:  21 March 2019     
ZTFLH:  TG146.2  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.164     OR     https://www.cjmr.org/EN/Y2019/V33/I10/794

Fig.1  Microstructure of precision forging Ti750-1 (a) and Ti750-2 (b) alloys
Fig.2  Microstructure of alloy after solution treatment at various temperature for Ti750-1 with 0.25% Mo at 940℃ (a), 980℃ (b) and 1000℃ (c) and for Ti750-2 with 1.0% Mo at 940℃ (d), 980℃ (e) and 1000℃ (f)
Fig.3  Relationship between volume fraction of αp phase and solution temperature of Ti750-1 alloy with 0.25% Mo and Ti750-2 alloy with 1.0% Mo
Fig.4  Al, Mo, W element distribution maps of Ti750-1 (a, b, c) and Ti750-2 (d, e, f) alloys at αp phase volume fraction of 60%
Alloysαp/%12345Average
Ti750-1206.0216.1326.1826.2156.356.18
405.4615.7465.8315.8595.8785.755
605.2895.3245.4075.7145.8355.514
Ti750-2206.1176.1826.2166.2496.3036.213
406.0486.1076.1966.2286.2996.175
606.0096.0246.046.1466.2486.09
Table 1  Al content in αp phase of Ti750 alloy (mass fraction)
Fig.5  Relationship between Al content in αp phase and the volume fraction of αp phase for Ti750-1 alloy with 0.25% Mo and Ti750-2 alloy with 1.0% Mo
Fig.6  Schematic diagram of V-T curves of titanium alloy
Fig.7  Relationship between the volume fraction of αp phase and solution time of Ti750 alloy at 930℃
Fig.8  Schematic diagram of Ti-Mo binary phase diagram of titanium alloy
[1] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective [J]. J. Aero. Mater., 2014, 34(04): 1
[1] 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
[2] Zhu L P, Li J C, Mo X F ,et al. Effect of annealing on microstructure and tensile property of cast TG6 high-temperature Ti-based alloy [J]. Iron Steel Vanadium Titanium, 2017, 38(01): 43
[2] 朱郎平, 李建崇, 莫晓飞等. 热处理对高温钛合金TG6铸造组织及性能的影响 [J]. 钢铁钒钛, 2017, 38(01): 43
[3] Rong X D, Huang L J, Wang B ,et al. Effects of heat treatment on microstructure and mechanical properties of Ti60 alloy with Widmanstatten microstructure [J]. T. Mater. Heat Treat., 2015, 36(10): 39
[3] 戎旭东, 黄陆军, 王 博等. 热处理对魏氏组织Ti60钛合金组织与性能的影响 [J]. 材料热处理学报, 2015, 36(10): 39
[4] Leyens C., Peter M.. Titanium and Titanium Alloys [M]. Weinheim: Die Deutsche Bibliothek, 2006
[5] Davies P., Pederson R., Coleman M. ,et al. The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air [J]. Acta Mater., 2016, 117: 51
[6] Froes F.H.. Titanium: Physical Metallurgy Processing and Applications [M]. Ohio: ASM International, 2015: 113
[7] Neal D.F.. Development and evaluation of high temperature titanium alloy IMI834 [J]. in: Proceedings of the 6th World Conference on Titanium, 1988: 253
[8] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium Alloy [M]. Beijing: Chemical Industry Press, 2005: 88
[8] Leyens C, Peters M著, 陈振华译. 钛与钛合金 [M]. 北京: 化学工业出版社, 2005: 88
[9] Eylon D., Fujishiro S., Postans P.J. ,et al. High-temperature titanium alloys-a review [J]. JOM, 1984, 36(11): 55
[10] Ahmed Mansur, Wexler David, Casillas Gilberto ,et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy [J]. Acta Mater., 2015, 84: 124
[11] Evans R. W., Hull R. J., Wilshire B. The effects of alpha-cast formation on the creep fracture properties of the high-temperature titanium alloy IMI834 [J]. J. Mater. Process. Tech., 1996, 56: 492
[12] Neal D. F. Proceeding of the fifth international conference on titanium congress-centre [J]. Titan. Sci. Tech., 1985: 2419
[13] Zhang S Z, Wang B, Liu Z Q, et al. Effect of carbon on the microstructure and mechanical properties of Ti-60 high temperature titanium alloy [J]. Chin. J. Mater. Res., 2007, 21(04): 433
[13] 张尚洲, 王 波, 刘子全等. 碳对高温钛合金Ti-60组织和性能的影响 [J]. 材料研究学报, 2007, 21(04): 433
[14] Oh S T, Woo K D, Kim J H ,et al. The effect of Al and V on microstructure and transformation of beta phase during solution treatments of cast Ti-6Al-4V alloy [J]. Korean J. Met. Mater., 2017, 55(03): 150
[15] Zeng L R, Chen H L, Li X ,et al. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Tech., 2018, 34(05): 782
[16] Xue Q, Ma Y J, Lei J F ,et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J.Mater. Sci. Tech., 2018, 34(12): 2325
[17] Menguccia P., Gattob A., Bassolib E., et al. Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering [J]. J. Mech. Behav. Biomed., 2017, 71: 1
[18] Lütjering G., Williams J., Titanium,ed 2nd. [M], Springer, Berlin, New York, 2003
[19] Gao X X , Zeng W D, Zhang S F ,et al. A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy [J]. Acta Mater., 2017, 122: 298
[20] Wang Y L, Song X Y, Ma W ,et al. Microstructure and tensile properties of Ti-62421S alloy plate with different annealing treatments [J]. Rare Metals, 2014, 37(7): 568
[21] Semiatin S L, Knisley S L, Fagin P N ,et al. Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V [J]. Metall. Mater. Trans. A, 2003, 34(10): 2377
[22] Zhang S Z, Wang Q J, Li G P ,et al. Correlation between heat-treatment windows and mechanical properties of high temperature titanium alloy Ti60 [J]. Acta Metall. Sin., 2002, 38: 70
[22] 张尚洲, 王青江, 李阁平等. 高温钛合金Ti-60热处理窗口与性能的关系 [J]. 金属学报, 2002, 38: 70
[23] Zhu S X. Effect of isomorphous β-stabilizing elements on microstructures and oxidation resistance of high temperature titanium alloy [D]. Shenyang: Shenyang University, 2008
[23] 朱绍祥. 同晶β稳定元素对高温钛合金显微组织和抗氧化性能的影响 [D]. 沈阳: 沈阳大学, 2008
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!