|
|
Effects of Heat Treatment on Microstructure, Texture and Tensile Properties of Ti65 Alloy |
WU Xiyue1,2,CHEN Zhiyong1,2( ),CHENG Chao1,2,LIU Jianrong1,2,XU Dongsheng1,2,WANG Qingjiang1,2 |
1. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
WU Xiyue,CHEN Zhiyong,CHENG Chao,LIU Jianrong,XU Dongsheng,WANG Qingjiang. Effects of Heat Treatment on Microstructure, Texture and Tensile Properties of Ti65 Alloy. Chinese Journal of Materials Research, 2019, 33(10): 785-793.
|
Abstract Microstructure- and texture-evolution of Ti65 Ti-alloy plate were investigated, and the tensile deformation mechanism of the plate after heat treatment with different texture were discussed. The results show that heat treatment has a significant influence on the evolution of microstructure and texture of the plate. Equiaxed-, duplex- and lamellar-microstructure would be obtained after different heat treatment. The plate with equiaxed microstructure presented a B/T texture, while the c-axis of the α-phase and the rolling direction (RD) met at a 70°~90° angle; similar texture could be found in duplex- and lamellar-microstructure, meanwhile a new texture that the c-axis of the α-phase paralleled to RD could be found in the alloy. Room temperature tensile strength of plates with duplex microstructure could be enhanced by the dislocations and sub-structures, while had little effect on tensile properties at high temperature. Texture was found to be the main factor affecting the anisotropy of tensile properties of Ti65 plates, the plate would possess good tensile properties without obvious anisotropy in tensile strength after heat treatment of 980℃/1 h/AC+700℃/4 h/AC.
|
Received: 21 February 2019
|
|
[1] | Liu Z, Liu P, Wang L ,et al. Fatigue properties of Ti-6.5Al-3.5Mo-l.5Zr-0.3Si alloy produced by direct laser deposition [J]. Mat. Sci. Eng. A , 2018, 716: 140 | [2] | Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective [J]. J. Aero. Mater. 2014, 34(4): 1 | [2] | 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1 | [3] | Mao X N, Zhao Y Q, Yang G J. Development situation of the overseas titanium alloys used for aircraft engine [J]. Materials China, 2007, 26(5): 1 | [3] | 毛小南, 赵永庆, 杨冠军. 国外航空发动机用钛合金的发展现状 [J]. 中国材料进展, 2007, 26(5): 1 | [4] | Sukumar G, Bhav Singh B, A Bhattacharjee,et al. Ballistic impact behaviour of β-CEZ Ti alloy against 7.62 mm armour piercing projectiles [J]. Int. J. Impact Eng., 2013, 54: 149 | [5] | Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley, Fundamentals and Applications, 2003 | [6] | Davies P, Pederson R, M Coleman,et al. The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air [J]. Acta Mater., 2016, 117: 51 | [7] | Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mat. Sci. Eng. A, 1996, 213(1): 103 | [8] | Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater, 2013, 61(3): 844 | [9] | Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Mat. Sci. Eng. A, 1998, 243(1): 32 | [10] | Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81(1): 11 | [11] | Li W Y, Liu J R, Chen Z Y,et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32(6): 455 | [11] | 李文渊, 刘建荣, 陈志勇等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32(6): 455 | [12] | Shi P Y, Zhang Y Q, Sun F,et al. Influences of solution and aging temperature on microstructure and mechanical properties of the IMI834 alloy [J]. Special Casting & Nonferrous Alloys, 2017, 37(9): 936 | [12] | 史蒲英, 张永强, 孙 峰等. 固溶时效温度对IMI834钛合金组织和性能的影响 [J]. 特种铸造及有色合金, 2017, 37(9): 936 | [13] | Wang G Q, Zhao Z B, Yu B B ,et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31(5): 352 | [13] | 王国强, 赵子博, 于冰冰,等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31(5): 352 | [14] | Ma Y J, Liu J R, Lei J F ,et al. The influence of multi heat-treatment on microstructure and mechanical properties of TC4 alloy [J]. Chin. J. Mater. Res., 2008, 22(5): 555 | [14] | 马英杰, 刘建荣, 雷家峰等. 多重热处理对TC4合金的组织和力学性能的影响 [J]. 材料研究学报, 2008, 22(5): 555 | [15] | Bridier F, Villechaise P, Mendez J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales [J]. Acta Mater., 2008, 56(15): 3951 | [16] | Liu Z, Qin Z X, Liu F ,et al. The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition [J]. Mater. Charact., 2014, 97: 132 | [17] | Li W, Chen Z, Liu J, et al. Effect of texture on anisotropy at 600℃in a near-α titanium alloy Ti60 plate [J]. Mat. Sci. Eng. A, 2017, 688: 322 | [18] | Es-Souni M. Creep deformation behavior of three high-temperature near α-Ti alloys: IMI 834, IMI 829, and IMI 685 [J]. Metall. Mater. Trans. A, 2001, 32(2): 285 | [19] | Fu Y Y, Song Y Q, Hui S X ,et al. Research and application of typical aerospace titanium alloys [J]. Chinese Journal of Rare Metals, 2006, 30(6): 850 | [19] | 付艳艳, 宋月清, 惠松骁等. 航空用钛合金的研究与应用进展 [J]. 稀有金属, 2006, 30(6): 850 | [20] | Du Z, Xiao S, Xu L, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Design, 2014, 55(55): 183 | [21] | Nieh T G, Wadsworth J. Hall-petch relation in nanocrystalline solids [J]. Scr. Metall. Mater., 1991, 25(4): 955 | [22] | Mora L, Quesne C, Penelle R. Relationships among thermomechanical treatments, microstructure, and tensile properties of a near beta-titanium alloy: β-CEZ: Part II. Relationships between thermomechanical treatments and tensile properties [J]. J. Mater. Res., 2011, 11(1): 89 | [23] | Xin S W, Zhao Y Q. Discussion About the Heat Treatment and Precipitated Phases of Titanium Alloy [J]. Heat Treat. Met-UK. 2006, 31(9): 39 | [23] | 辛社伟, 赵永庆. 关于钛合金热处理和析出相的讨论 [J]. 金属热处理, 2006, 31(9): 39 | [24] | Zhao L. Study on silicide of Ti-60A high-temperature titanium alloy and control of β grain size [D]. Shenyang, Institute of Metal Research, Chinese Academy of Sciences, 2008 | [24] | 赵 亮. Ti-60A合金中的硅化物及原始β晶粒尺寸控制研究 [D]. 沈阳, 中国科学院金属研究所, 2008 | [25] | Yapici G G, Karaman I, Maier H J. Mechanical flow anisotropy in severely deformed pure titanium [J]. Mat. Sci. Eng. A, 2006, 434(1): 294 | [26] | Nemat-Nasser S, Guo W G, Cheng J Y,Mechanical properties and deformation mechanisms of a commercially pure titanium [J]. Acta Mater., 1999, 47(13): 3705 | [27] | Kalinyuk A N, Trigub N P, Zamkov V N ,et al. Microstructure, texture, and mechanical properties of electron-beam melted Ti-6Al-4V [J]. Mat. Sci. Eng. A, 2003, 346(1): 178 | [28] | Di W U, Wang G Q, Wang J D ,et al. Investigation on cold rolling for titanium sheet under tensional effect [J]. Journal of Northeastern University, 2008, 29(10): 1435-1437+1442 | [29] | Biavant K L, Pommier S, Prioul C. Local texture and fatigue crack initiation in a Ti‐6Al‐4V titanium alloy [J]. Fatigue Fract. Eng. M, 2010, 25(6): 527 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|