Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (10): 785-793    DOI: 10.11901/1005.3093.2019.110
ARTICLES Current Issue | Archive | Adv Search |
Effects of Heat Treatment on Microstructure, Texture and Tensile Properties of Ti65 Alloy
WU Xiyue1,2,CHEN Zhiyong1,2(),CHENG Chao1,2,LIU Jianrong1,2,XU Dongsheng1,2,WANG Qingjiang1,2
1. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WU Xiyue,CHEN Zhiyong,CHENG Chao,LIU Jianrong,XU Dongsheng,WANG Qingjiang. Effects of Heat Treatment on Microstructure, Texture and Tensile Properties of Ti65 Alloy. Chinese Journal of Materials Research, 2019, 33(10): 785-793.

Download:  HTML  PDF(7846KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure- and texture-evolution of Ti65 Ti-alloy plate were investigated, and the tensile deformation mechanism of the plate after heat treatment with different texture were discussed. The results show that heat treatment has a significant influence on the evolution of microstructure and texture of the plate. Equiaxed-, duplex- and lamellar-microstructure would be obtained after different heat treatment. The plate with equiaxed microstructure presented a B/T texture, while the c-axis of the α-phase and the rolling direction (RD) met at a 70°~90° angle; similar texture could be found in duplex- and lamellar-microstructure, meanwhile a new texture that the c-axis of the α-phase paralleled to RD could be found in the alloy. Room temperature tensile strength of plates with duplex microstructure could be enhanced by the dislocations and sub-structures, while had little effect on tensile properties at high temperature. Texture was found to be the main factor affecting the anisotropy of tensile properties of Ti65 plates, the plate would possess good tensile properties without obvious anisotropy in tensile strength after heat treatment of 980℃/1 h/AC+700℃/4 h/AC.

Key words:  matallic materials      Ti-alloy      Ti65      heat treatment      microstructure      texture      tensile properties     
Received:  21 February 2019     
ZTFLH:  TG146.2  
  TG15  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.110     OR     https://www.cjmr.org/EN/Y2019/V33/I10/785

NumberHeat treatment
HT-α700℃/4 h/AC
HT-αβL980℃/1 h/AC+ 700℃/4 h/AC
HT-αβH1015℃/1 h/AC+ 700℃/4 h/AC
HT-β1055℃/1 h/AC+ 700℃/4 h/AC
Table 1  Heat treatment of Ti65 plates
Fig.1  Microstructures of heat treated plates: (a, b) HT-α, (c, d) HT-αβL, (e, f) HT-αβH, (g, h) HT-β. Note that (a, c, e and g) are samples of RD and others are of TD
Fig.2  {0001}和{112ˉ0} pole figures of heat treated plates (a) HT-α, (b) HT-αβL, (c) HT-αβH, (d) HT-β
Heat treatmentRp0.2/MPaRm/MPaσ/%
RDTDRDTDRDTD
HT-α105310701141116213.816.0
HT-αβL101610341100111913.514.3
HT-αβH103710731134118713.815.0
HT-β1060979116110956.09.8
Table 2  Room temperature tensile property of plates after different heat treatments
Fig.3  Room temperature tensile strength of plates after different heat treatments
Heat treatmentRp0.2/MPaRm/MPaσ/%
RDTDRDTDRDTD
HT-α35641055460466.444.8
HT-αβL42344456259049.331.0
HT-αβH45854462970824.517.5
HT-β578553716668/7.0
Table 3  650℃ tensile property of plates after different heat treatments
Fig.4  Tensile strength at 650℃ after different heat treatments
Fig.5  Dislocations and substructures in plates after different heat treatment. (a) HT-α; (b) HT-αβL
Fig.6  Inverse pole figures of RD and TD in plates after different heat treatments and distribution map of Schmidt factors. (a) HT-α IPF-RD; (b) HT-α IPF-TD; (c) HT-αβL IPF-RD; (d) HT-αβL IPF-TD; (e) HT-αβ H IPF-RD; (f) HT-αβH IPF-TD; (g) HT-β IPF-RD; (h) HT-β IPF-TD; (i) Contour lines of Schmidt factors in the stress direction-basal plane; (h) Contour lines of Schmidt factors in the stress direction-prismatic plane
[1] Liu Z, Liu P, Wang L ,et al. Fatigue properties of Ti-6.5Al-3.5Mo-l.5Zr-0.3Si alloy produced by direct laser deposition [J]. Mat. Sci. Eng. A , 2018, 716: 140
[2] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective [J]. J. Aero. Mater. 2014, 34(4): 1
[2] 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
[3] Mao X N, Zhao Y Q, Yang G J. Development situation of the overseas titanium alloys used for aircraft engine [J]. Materials China, 2007, 26(5): 1
[3] 毛小南, 赵永庆, 杨冠军. 国外航空发动机用钛合金的发展现状 [J]. 中国材料进展, 2007, 26(5): 1
[4] Sukumar G, Bhav Singh B, A Bhattacharjee,et al. Ballistic impact behaviour of β-CEZ Ti alloy against 7.62 mm armour piercing projectiles [J]. Int. J. Impact Eng., 2013, 54: 149
[5] Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley, Fundamentals and Applications, 2003
[6] Davies P, Pederson R, M Coleman,et al. The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air [J]. Acta Mater., 2016, 117: 51
[7] Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mat. Sci. Eng. A, 1996, 213(1): 103
[8] Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater, 2013, 61(3): 844
[9] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Mat. Sci. Eng. A, 1998, 243(1): 32
[10] Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81(1): 11
[11] Li W Y, Liu J R, Chen Z Y,et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32(6): 455
[11] 李文渊, 刘建荣, 陈志勇等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32(6): 455
[12] Shi P Y, Zhang Y Q, Sun F,et al. Influences of solution and aging temperature on microstructure and mechanical properties of the IMI834 alloy [J]. Special Casting & Nonferrous Alloys, 2017, 37(9): 936
[12] 史蒲英, 张永强, 孙 峰等. 固溶时效温度对IMI834钛合金组织和性能的影响 [J]. 特种铸造及有色合金, 2017, 37(9): 936
[13] Wang G Q, Zhao Z B, Yu B B ,et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31(5): 352
[13] 王国强, 赵子博, 于冰冰,等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31(5): 352
[14] Ma Y J, Liu J R, Lei J F ,et al. The influence of multi heat-treatment on microstructure and mechanical properties of TC4 alloy [J]. Chin. J. Mater. Res., 2008, 22(5): 555
[14] 马英杰, 刘建荣, 雷家峰等. 多重热处理对TC4合金的组织和力学性能的影响 [J]. 材料研究学报, 2008, 22(5): 555
[15] Bridier F, Villechaise P, Mendez J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales [J]. Acta Mater., 2008, 56(15): 3951
[16] Liu Z, Qin Z X, Liu F ,et al. The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition [J]. Mater. Charact., 2014, 97: 132
[17] Li W, Chen Z, Liu J, et al. Effect of texture on anisotropy at 600℃in a near-α titanium alloy Ti60 plate [J]. Mat. Sci. Eng. A, 2017, 688: 322
[18] Es-Souni M. Creep deformation behavior of three high-temperature near α-Ti alloys: IMI 834, IMI 829, and IMI 685 [J]. Metall. Mater. Trans. A, 2001, 32(2): 285
[19] Fu Y Y, Song Y Q, Hui S X ,et al. Research and application of typical aerospace titanium alloys [J]. Chinese Journal of Rare Metals, 2006, 30(6): 850
[19] 付艳艳, 宋月清, 惠松骁等. 航空用钛合金的研究与应用进展 [J]. 稀有金属, 2006, 30(6): 850
[20] Du Z, Xiao S, Xu L, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Design, 2014, 55(55): 183
[21] Nieh T G, Wadsworth J. Hall-petch relation in nanocrystalline solids [J]. Scr. Metall. Mater., 1991, 25(4): 955
[22] Mora L, Quesne C, Penelle R. Relationships among thermomechanical treatments, microstructure, and tensile properties of a near beta-titanium alloy: β-CEZ: Part II. Relationships between thermomechanical treatments and tensile properties [J]. J. Mater. Res., 2011, 11(1): 89
[23] Xin S W, Zhao Y Q. Discussion About the Heat Treatment and Precipitated Phases of Titanium Alloy [J]. Heat Treat. Met-UK. 2006, 31(9): 39
[23] 辛社伟, 赵永庆. 关于钛合金热处理和析出相的讨论 [J]. 金属热处理, 2006, 31(9): 39
[24] Zhao L. Study on silicide of Ti-60A high-temperature titanium alloy and control of β grain size [D]. Shenyang, Institute of Metal Research, Chinese Academy of Sciences, 2008
[24] 赵 亮. Ti-60A合金中的硅化物及原始β晶粒尺寸控制研究 [D]. 沈阳, 中国科学院金属研究所, 2008
[25] Yapici G G, Karaman I, Maier H J. Mechanical flow anisotropy in severely deformed pure titanium [J]. Mat. Sci. Eng. A, 2006, 434(1): 294
[26] Nemat-Nasser S, Guo W G, Cheng J Y,Mechanical properties and deformation mechanisms of a commercially pure titanium [J]. Acta Mater., 1999, 47(13): 3705
[27] Kalinyuk A N, Trigub N P, Zamkov V N ,et al. Microstructure, texture, and mechanical properties of electron-beam melted Ti-6Al-4V [J]. Mat. Sci. Eng. A, 2003, 346(1): 178
[28] Di W U, Wang G Q, Wang J D ,et al. Investigation on cold rolling for titanium sheet under tensional effect [J]. Journal of Northeastern University, 2008, 29(10): 1435-1437+1442
[29] Biavant K L, Pommier S, Prioul C. Local texture and fatigue crack initiation in a Ti‐6Al‐4V titanium alloy [J]. Fatigue Fract. Eng. M, 2010, 25(6): 527
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[8] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[10] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[11] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[12] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[13] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[14] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
No Suggested Reading articles found!