Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (12): 921-930    DOI: 10.11901/1005.3093.2015.12.921
Orginal Article Current Issue | Archive | Adv Search |
Salt Solution Attack Induced Mechanical Property Degradation and Quantitative Analysis Method for Evolution of Meso-structure Damages of Mortar
Tielin HAN1,2,**(),Junping SHI2,Yunsheng CHEN1,2,Shuo DANG1,2,Peng SU1,2
1. Institute of Rock and Soil Mechanics, Xi'an University of Technology, Xi'an 710048, China
2. School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China
Cite this article: 

Tielin HAN,Junping SHI,Yunsheng CHEN,Shuo DANG,Peng SU. Salt Solution Attack Induced Mechanical Property Degradation and Quantitative Analysis Method for Evolution of Meso-structure Damages of Mortar. Chinese Journal of Materials Research, 2015, 29(12): 921-930.

Download:  HTML  PDF(780KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The meso-structure evolution of mortar may certainly induce a significant effect on its macroscopic mechanical properties. Herewith, the mechanism concerning the mechanical property degradation and the evolution of corrosion induced meso-structure damages of mortar were studied after immersion in different salt solutions. The experimental results show that after corrosion in salt solutions, the plastic deformation of mortar increased; and the stronger is the corrosion attack, the larger is the plastic deformation of the mortar; however which is an obvious time dependent process. Thus the degree of plastic deformation may be a reflection of the corrosion degree of mortar. A method based on nondestructive inspection was proposed to predict the variation of mortar porosity versus corrosion time, and then a new parameter for describing the damages was proposed . The present study revealed that after immersion in salt solutions the corrosion attack induced damage degree of mortar is closely related to its physical and mechanical parameters, which proves that the proposed method for quantitative analysis of the evolution of meso-structure damages is reasonable.

Key words:  inorganic non-metallic materials      mortar specimen      chemical erosion      meso-chemical damage variable      plastic deformation     
Received:  23 March 2015     
Fund: *Supported by National Natural Science Foundation of China Nos.51269024 & 11302167

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.12.921     OR     https://www.cjmr.org/EN/Y2015/V29/I12/921

Fig.1  Histogram of variation of pH value for different chemical solution conditions (a) effect of pH, (b) effect of concentration, (c) effect of chemical compositions
Fig.2  Histograms of physical parameters of 0.01 mol/L Na2SO4 pH = 1, 3, 7, 9 after 240 d
Fig.3  Histograms of physical parameters of 0.01, 0.1, 0.5 mol/L Na2SO4 solution after 240 d
Fig.4  Histograms of physical parameters of 0.01 mol/L Na2SO4 and NaHCO3 after 240 d, (a) ion concentration, (b) Fe(Fe3++Fe2+)
Fig.5  Histograms of physical parameters of 0.01 mol/L, pH=7 Na2SO4 and pH=7 distilled after 240 d, (a) ion concentration, (b) Fe(Fe3++Fe2+)
Immersion time/d Chemical
composition
pH concentration/molL-1 Peak strength
/MPa
Peak strain
/%
Modulus of elasticity
/GPa
Up/mm
60
120
240
Na2SO4 1 0.01 30.144
21.397
17.442
0.325
0.394
0.508
11.5100
9.1000
7.0889
0.631060
1.588681
2.619533
60
120
240
Na2SO4 3 0.01 33.332
30.386
24.770
0.289
0.307
0.346
13.9800
14.1170
11.1900
0. 505737
0.917560
1.246416
60
120
240
Na2SO4 7 0.01 38.699
34.157
29.239
0.296
0.312
0.352
15.1200
14.5200
11.6120
0. 400540
0. 767590
1.002001
60
120
240
Na2SO4 9 0.01 39.410
37.603
34.157
0.249
0.276
0.312
17.2500
15.9500
14.4600
0.205362
0. 402445
0. 757828
60
120
240
Na2SO4 - 0.1 31.382
28.270
22.929
0.296
0.346
0.490
15.6069
11.5940
8.6754
0. 949222
1.021670
2.257009
60
120
240
Na2SO4 - 0.5 30.216
26.677
19.562
0.327
0.371
0.504
13.9800
10.9600
7.7829
1.108627
1.275958
2.526538
60
120
240
NaHCO3 - 0.01 35.867
31.382
26.971
0.278
0.296
0.311
15.0800
14.2300
11.8134
0. 401552
0. 754660
0. 826915
60
120
240
distilled water 7 39.104
37.310
33.216
0.289
0.316
0.327
15.4100
14.4300
13.3041
0. 352427
0. 574414
0. 773333
Natural state 43.368 0.226 19.2166 0. 003200
Table1  Experimental results of uniaxial compression of mortar specimens
Fig.6  Curves of Up and ε1of mortar specimens
Fig.7  Curves of Up and σ, E of mortar specimens
Immersion time/d Chemical
composition
pH Concentration
/molL-1
n0
/%
n(t)
/%
a
/%
νp0
/%
νp(t)
/%
b
/%
D
60
120
240
Na2SO4 1 0.01 8.66
7.85
8.37
10.18
9.70
10.62
17.64
23.58
26.76
3749
3854
3785
3565
3621
3516
4.91
6.05
7.11
0.0167
0.0201
0.0245
60
120
240
Na2SO4 3 0.01 8.25
8.27
8.50
9.23
9.57
10.01
11.82
15.72
17.77
3801
3798
3769
3678
3636
3585
3.24
4.27
4.88
0.0106
0.0142
0.0165
60
120
240
Na2SO4 7 0.01 8.37
8.06
8.51
9.28
9.21
9.86
10.87
14.27
15.94
3786
3826
3768
3672
3680
3602
3.01
3.82
4.41
0.0099
0.0125
0.0148
60
120
240
Na2SO4 9 0.01 8.38
8.16
8.50
9.12
9.09
9.57
8.81
11.38
12.66
3784
3813
3769
3691
3695
3636
2.46
3.09
3.53
0.0081
0.0101
0.0118
60
120
240
Na2SO4 - 0.1 8.02
8.48
8.14
9.32
10.19
9.99
16.14
20.24
22.80
3831
3772
3816
3667
3564
3587
4.28
5.51
6.00
0.0141
0.0187
0.0202
60
120
240
Na2SO4 - 0.5 7.91
8.42
7.79
9.28
10.24
9.76
16.86
21.60
25.29
3846
3779
3862
3676
3558
3614
4.42
5.85
6.42
0.0149
0.0199
0.0214
60
120
240
NaHCO3 - 0.01 8.51
9.42
8.09
9.45
10.62
9.41
10.98
12.73
16.28
3767
3654
3822
3651
3515
3656
3.08
3.80
4.34
0.0102
0.0132
0.0143
60
120
240
distilled water 7 8.67
8.31
8.23
9.47
9.22
9.17
9.26
10.90
11.44
3747
3793
3804
3648
3679
3685
2.64
3.01
3.13
0.0088
0.0099
0.0103
Table 2  Test results of νp(t) and calculation results of n(t)
Fig.8  Curves of Vp(t) and n(t)of mortar specimens
Fig.9  Curves of b and a of mortar specimens
Fig.10  Curves of Up and a, b of mortar specimens
Fig.11  Curves of D and Up, ε1of mortar specimens
Fig.12  Curves of D and σ, E of mortar specimens
Fig.13  Curves of D and b of mortar specimens
Fig.14  Curves of D and Ca2+, Mg2+ of mortar specimens
Fig.15  Curves of D and Fe(Fe3+, Fe2+) of mortar specimens
1 N. I. Fattuhi, B. P. Hughes, The performance of cement paste and concrete subjected to sulphuric acid attack, Cement and Concrete Research, 18(4), 545(1988)
2 L. H. Kong, G. James, Concrete deterioration due to acid precipitation, ACI Materials Journal, 84(2), 110(1987)
3 S. Chandra, Hydrochloric acid attack on cement mortar an analytical study, Cement and Concrete Research, (18), 193(1988)
4 K. Attiogbe, S. H. Rizkalla, Response of concrete to sulfuric acid attack, ACI Materials Journal,(85), 481(1988)
5 XIE Shaodong, ZHOU Ding, YUE Qixian, LIU Huiling, Influence of simulated acid rain on strength, crystal and pore structures of sand-lime slurry, Acta Scientiae Circum Stantiae, 17(l), 25(1997)
6 (谢绍东, 周定, 岳齐贤, 刘慧玲, 模拟酸雨对砂浆强度、物相和孔结构影响的研究, 环境科学学报, 17(l), 25(1997))
6 ZHOU Ding, XIE Shaodong, YUE Qixian, Study on the influence of simulated acid rain on sand-lime slurry, China Environmental Science, 16(1), 20(1996)
7 (周定, 谢绍东, 岳奇贤, 模拟酸雨对砂浆影响的研究, 中国环境科学, 16(1), 20(1996))
7 HUO Runke, LI Ning, ZHANG Haobo, Experimental study on physical characteristics of mortar subjected to hydrochloric acid attack, Rock and Soil Mechanics, 27(9), 1541(2006)
8 (霍润科, 李宁, 张浩博, 酸性环境下类砂浆材料物理性质的试验研究, 岩土力学, 27(9), 1541(2006))
8 HUO Runke, LI Ning, LIU Handong, Analysis of characteristic of longitudinal wave of mortar subject to hydrochloric acid attack, Rock and Soil Mechanic, 26(4), 608(2005)
9 (霍润科, 李宁, 刘汉东, 酸性环境下类砂岩材料波速特性分析, 岩土力学, 26(4), 608(2005))
9 NING Baokuan, ZHENG Nan, CHEN Sili, LIN Siyuan, Compressive strength of cement mortar under erosion of SO42+、HCO3-, Journal of Shenyang University of Technology, 30(4), 477(2008)
10 (宁宝宽, 郑楠, 陈四利, 林思源, SO42+、HCO3-侵蚀作用下水泥砂浆的抗压强度, 沈阳工业大学学报, 30(4), 477(2008))
10 ZHENG Nan, Experimental study for Cement Mortar’s Mechanical Capability under Environment Erosion, PhD Thesis (Liaoning, Shengyang University of Technology, 2008)
11 (郑楠, 环境侵蚀下水泥砂浆力学性能的试验研究, 博士学位论文(辽宁, 沈阳工业大学, 2008))
11 YANG Kai, LIU Jiang, SHI Zailing, LI Beixing, Research on the properties of mortar under strong acidic-environment, Concrete, 34(2), 113(2011)
12 (杨凯, 刘江, 施载玲, 李北星, 强酸性环境下砂浆性能变化研究, 混凝土, 34(2), 113(2011))
12 YANG Kai, ZHOU Mingkai, LI Beixing, TANG Kai, Study on the acid resistance of different cement mortar, Cement Guide for New Epoch, (2), 3(2011)
13 (杨凯, 周明凯, 李北星, 唐凯, 不同水泥砂浆的耐酸性研究, 新世纪水泥导报, (2), 3(2011))
13 CHEN Mengcheng, XIA Feng, WANG Kai, LUO Rui, Effect acid rain on surface damage of cement mortars, Concrete, (6), 112(2014)
14 (陈梦城, 夏峰, 王凯, 罗睿, 酸雨对水泥砂浆表面腐蚀损伤的影响, 混凝土, (6), 112(2014))
14 SONG Zhigang, ZHANG Xuesong, Experimental study of Mortar under Corrosion in Sulfuric Acid, Journal of Building Materials, 15(2), 163(2012)
15 (宋志刚, 张雪松, 稀硫酸侵蚀砂浆的试验研究, 建筑材料学报, 15(2), 163(2012)
15 HUO Runke, Experimental research on progressive and deteriorative characteristics of sandstone and mortar materials subjected to hydrochloric acid corrosion, PhD Thesis(Shanxi, Xi’an University of Technology, 2006)
16 (霍润科, 酸性环境下砂浆、砂岩材料的受酸腐蚀过程及其基本特性劣化规律的试验研究, 博士学位论文(陕西, 西安理工大学, 2006))
16 H. Grube, W. Rechenberg, Durability of concrete structures in acidic water, Cement and Concrete Research, (19), 783(1989)
17 H.T. CAO, L. Bucea, A. Ray, S. Yozghatlian, The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements, Cement and Concrete Composites, 19(2), 161(1997)
18 Hydrological and Geophysical Exploration Compilation Group of Changchun Geology Institute, Geophysical Exploration Tutorial of Hydrological Geology and Engineering Geology(Beijing, Geological Publishing House, 1981)
19 (长春地质学院水文物探编写组, 水文地质工程地质物探教程(北京, 地质出版社, 1981))
19 YANG Shengqi, XU Weiya, SU Chengdong, Study of the deformation failure and energy properties of rock specimen in uniaxial compression, ACTA Mechanics Solida Sinica, 27(2), 213(2007)
20 (杨圣奇, 徐卫亚, 苏承东, 岩样单轴压缩变形破坏与能量特征研究, 固体力学学报, 27(2), 213(2007))
20 YOU Mingqing, Rock Specimen Strength and Deformation and Failure Process (Beijing, Geological Publishing House, 2000)
21 (尤明庆, 岩石试样的强度及变形破坏过程(北京, 地质出版社, 2000))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] LIU Tao, YIN Zhiqiang, LEI Jingfa, GE Yongsheng, SUN Hong. Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression[J]. 材料研究学报, 2023, 37(5): 391-400.
[7] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!