Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (5): 365-370    DOI: 10.11901/1005.3093.2017.156
ARTICLES Current Issue | Archive | Adv Search |
Synthesis of Mg-Fe-Al Composite Spinel by Carbon Thermal Reduction Method
Yanhui WANG, Shujiang CHEN(), Guohua LI, Lin TIAN, Lijie SUN
College of High Temperature Materials and Magnesium Resource Engineering, Liaoning University of Science and Technology, Anshan 114051, China
Cite this article: 

Yanhui WANG, Shujiang CHEN, Guohua LI, Lin TIAN, Lijie SUN. Synthesis of Mg-Fe-Al Composite Spinel by Carbon Thermal Reduction Method. Chinese Journal of Materials Research, 2018, 32(5): 365-370.

Download:  HTML  PDF(1904KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-Fe-Al composite spinel was synthesized via carbon thermal reduction method at 1550℃ with a size of ?20 mm×10 mm. The phase composition and the microstructure of the prepared composite spinel was characterized by X ray diffractometer and scanning electron microscopy respectively. The lattice constant and the unit cell volume of the Mg-Fe-Al composite spinel were calculated by combining the interplanar spacing of the specific crystal plane. Potassium dichromate volumetric method was used to determine the content of ferrous oxide in the composite spinel. Results show that two kinds of Mg-Fe-Al composite spinel with different morphology were produced,of which the lattice constant and unit cell volume are larger than those presented in standard cards for MgO·Al2O3 and the main peaks of which shift to the lower angle side. A small amount of MgO and Al2O3 were reduced by C forming Mg- and Al-vapor, which then react with CO and O2 depositing as acicular MgO·Al2O3. The presence of liquid phase at high temperature promoted the formation of Al15.99Mg7.64Fe0.37O32 phase. A large amount of MgO and Al2O3 reacted directly to form granular MgO·Al2O3, Fe2+ and Fe3+ diffused into MgO·Al2O3 crystallites to form Mg8.13Al14.25Fe1.13O32 phase. The content of FeO in the composite spinel was 2.38% measured by potassium dichromate volumetric method.

Key words:  inorganic non-metallic materials      magnesium-iron-aluminum composite spinel      arbon thermal reduction method      magnesia-alumina spinel      potassium dichromate volumetric method      lattice constant     
Received:  07 June 2017     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.156     OR     https://www.cjmr.org/EN/Y2018/V32/I5/365

Raw materials MgO SiO2 CaO Al2O3 Fe2O3
Fused magnesia 98.0 0.5 0.7 0.5 0.3
Tabular
corundum
98.5
Analytical
reagent iron oxide
99.5
Table1  Chemical component of raw materials (mass fraction, %)
Fig.1  XRD patterns of the sample
Experimental group a/nm V/×10-6 μm3
Hercynite 8.0911 0.5297
Al15.99Mg7.64Fe0.37O32 8.0897 0.5294
Mg8.13Al14.25Fe1.13O32 8.0885 0.5292
Magnesia-alumina spinel 8.0860 0.5287
Table 2  Lattice constant and unit cell volume of the sample
Fig.2  Displacement of XRD peaks of FeOAl2O3、Al15.99Mg7.64-Fe0.37O32、Mg8.13Al14.25Fe1.13O32 in the sample
Fig.3  SEM images of sample
Component Mg Al Fe O
16.35 33.02 8.16 42.47
14.65 30.82 13.59 40.94
46.65 9.22 44.13
Table 3  EDS analysis results of the remarked spot of Fig.3(%, mass fraction)
Gases CO N2 CO2 O2
Partial pressure 3.5×104 6.5×104 1.6 4.3×10-12
Table 4  Under the test environment, partial pressure of different gases in equilibriam/Pa
Mg-O2-CO system
Equation Equilibrium partial pressure
Mg(g)+CO(g)=MgO(s)+C(s) (10) lg(PCO/Pθ)=-2.596
Mg(g)+0.5O2(g)= MgO(s) (11) lg(PO2/Pθ)=-20.726
Al-O2-CO system
Equation Equilibrium partial pressure
2Al(g)+3CO(g)=Al2O3(s)+3C(s) (12) lg(PCO/Pθ)=-42.289
2Al(g)+3/2O2(g)=Al2O3(s) (13) lg(PO2/Pθ)=-24.932
Table 5  Equilibrium partial pressure of the condensed phase in Mg-O2-CO and Al-O2-CO system
Fig.4  Thermodynamics parameter state diagram of Mg-O2-CO and Al-O2-CO systems at 1550℃
Fig.5  Formation process of each spinel in the sample
[1] Gambelunghe A, Piccininn R.Primary DNA damage in chrome-plating workers[J]. Toxicology, 2003, 188(2-3): 187
[2] Plaper A, Jenko-brinovec S, Premzl A. Genotoxicity of trivalent chromium in bacterial cells-Possible effects on DNA topology[J]. Chem Res Toxicol, 2002, 15(7): 943
[3] Xie H, Wise S.S, Holmes A. L. Carcinogenic lead chromate induces DNA double-strand breaks in human lung cells[J]. Mutation Research, 2005, 586(2-3): 160
[4] Liao J G.Evolution of chrome free bricks used in cement rotary kiln[J]. Foreign Refractories, 2003, 28(5): 6(廖建国. 水泥回转窑用无铬砖的演变[J]. 国外耐火材料, 2003, 28(5): 6)
[5] Gui M X, translate. Usefulness and existing problems of refractory materials in zirconium system[J]. Foreign Refractories, 2005, 30(4): 57(桂明玺译. 锆系耐火材料的有用性和存在的问题[J]. 国外耐火材料, 2005, 30(4): 57)
[6] Shi S H.Investigation into the reaction mechanism of clinker to chrome-free refractories used in large-scale dry-process cement rotary kiln [D]. Xi'an: Xi'an University of Architecture and Technology, 2006(师素环. 大型干法水泥窑用无铬耐火材料与窑料的反应机理研究 [D]. 西安: 西安建筑科技大学, 2006)
[7] Lee, William E, Moore, et al. Evolution of In-situ Refractories in the 20th Century[J]. Journal of America Ceramic Society, 1998, 81: 1385
[8] Jiang M F, Sun L F, Yu J K.The Development and Application of agnesia-alumina Spinel Refractories[J]. Industrial heating, 2005, 34(2): 56(姜茂发, 孙丽枫, 于景坤. 镁铝尖晶石耐火材料的开发与应用[J]. 工业加热, 2005, 34(2): 56)
[9] Chen Y D.Development tendency of alkaline refractory material for precalciner kiln[J]. Refarctories, 2000, 34(2): 8(陈有德. 预分解窑用碱性耐火衬料的发展动向与趋势[J]. 耐火材料, 2000, 34(2): 8)
[10] Gui M X, translate. Usefulness and existing problems of refractory materials in zirconium system[J]. Foreign Refractories, 2005, 30(4): 57(桂明玺译. 锆系耐火材料的有用性和存在的问题[J]. 国外耐火材料, 2005, 30(4): 57)
[11] Tian X L, Xue C H, Xue Q H, et al.Development of MgO-CaO-ZrO2 refractories in cement rotary kiln[J]. Industrial Furnace. 2011, 33(6): 46(田晓利, 薛崇勃, 薛群虎等. 水泥窑用镁钙锆质耐火材料的发展[J].工业炉, 2011, 33(6): 46)
[12] Jin L P, Xia H, translate. Technical progress of basic furnace materials used in cement rotary kiln[J]. Foreign Refractories, 2005, 30(2): 1(金利萍, 夏辉译. 水泥回转窑用碱性炉材的技术进步[J]. 国外耐火材料, 2005, 30(2): 1)
[13] Qian Z J, Zhu B Q.Trend of Chrome-free Basic Bricks for Cement Rotary Kiln[J]. of Wuhan Uni. of Sci. & Tech.(Natural Science Edition), 2002, 28(1): 16(钱忠俊, 朱伯铨. 水泥回转窑用碱性耐火材料的无铬化[J]. 武汉科技大学学报(自然科学版), 2002, 28(1): 16)
[14] Jiang M X, Li Y, Chen Z Y.Refractory materials [M]. Beijing: Metallurgical industry press, 1998(蒋明学, 李勇, 陈肇友. 耐火材料论文选 [M]. 北京:冶金工业出版社, 1998)
[15] Buchebner G, Molinari T, Harmuth H.Magnesia-hercynite bricks-aninnovative burnt basic refractory. Proceedings of the Sixth UNITECR'99[C]. Berlin, 1999: 201
[16] Ma S L.Reseach on both synthesis of hercynite and application performance of hercynite-containing basic refractory in cement kiln [D]. Beijing: University of Science and Technology Beijing, 2008(马淑龙. 水泥窑用铁铝尖晶石的合成及其碱性制品应用性能研究 [D]. 北京: 北京科技大学, 2008)
[17] Liu H L, Shen J P, LIU X Z, et al.Development of magaesia hercynite brick for burning zone of cementrotary kiln[J]. Refractories, 2004, 38(6): 414(刘会林, 沈建萍, 刘雄章等. 水泥窑烧成带用镁铁铝尖晶石砖的研制[J]. 耐火材料, 2004, 38(6): 414)
[18] Ma S L, Li Y, Sun J L.Effect of MgO on Synthesis and Sintering of Hercynite[J]. Refrectory, 2010, 44(5): 334
[19] Otroj S.Synthesis of Hercynite under Air Atmosphere Using MgAl2O4 Spinel[J]. Materials Science. 2015, 21(2): 288
[20] Guo Z Q, Josef N .Application of MgO-hercynite spinel refractory in cement rotary kiln[J]. China Cement. 2007, 14(5): 63(郭宗奇, JOSEF Nievoll.氧化镁-铁铝尖晶石耐火材料在水泥回转窑中的应用[J]. 中国水泥, 2007, 14(5): 63)
[21] Liu G, Li N, Yan W.Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln[J]. Ceram Int, 2014,40(6): 8149
[22] Zhang H B, Li Y, Sun J L.Novel process for synthesis of MgO-Al2O3-FeOn composite materials at low temperature[J]. Journal of The Chinese Ceramic Society, 2015, 43(6): 747(张浩波, 李勇, 孙加林等. 低温合成MgO-Al2O3-FeOn复相材料[J]. 硅酸盐学报. 2015, 43(6): 747)
[23] Liu L F.Quantitative analysis of the Iron Valence State in Magnesia-Iron-Alumina System [D]. Anshan: University of Science and Technology Liaoning, 2016.(刘兰方. 镁铁铝系材料中不同价态铁的定量分析 [D]. 鞍山: 辽宁科技大学, 2016)
[24] Qin H X, Li Y, Sun J L, et al.Reaction Mechanism of Ferro-silicon Nitride-corundum Composite With Carbon Embedded[J]. Journal of The Chinese Ceramic Society, 2014, 42(9): 1184(秦海霞, 李勇, 孙加林等. 埋碳条件下氮化硅铁-刚玉复合材料的反应机理[J]. 硅酸盐学报. 2014, 42(9): 1184)
[25] Chen Z Y.Chemical materials and refractory materials [M]. Beijing: Metallurgical industry press, 2005.(陈肇友. 化学材料与耐火材料 [M]. 北京: 冶金工业出版社, 2005)
[26] Yang Y .Study on thermodynamics of FeOx deoxidization, Fe recycled from steel slag and properties of residue [D]. South China University of Technology, 2013.(杨曜. 钢渣中FeOx还原反应热力学、Fe还原回收效果及余渣性能的研究 [D]. 华南理工大学, 2013)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!