Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (3): 220-228    DOI: 10.11901/1005.3093.2015.643
Orginal Article Current Issue | Archive | Adv Search |
In Vitro Biocompatibility and Antibacterial Property of a Novel Magnesium Phosphate Whisker
ZHAO Bing1,2,4,5, XU Dake3, SUN Ziqing3, REN Yibin3, ZHAN Desong1,2,4,5,**(), XIAO Keshen3,**, YANG Ke3
1. Department of Dental Material, School of Stomatology, China Medical University, Shenyang 110002, China
2. Liaoning Institute of Dental Research, Shenyang 110002, China
3. Institute of Metal Research, Chinese Academic of Sciences, Shenyang 110016, China
4. Liaoning Province Oral Diseases Key Laboratory, Shenyang 110002, China
5. Liaoning Province Oral Diseases Translation Medcicne Research Center, Shenyang 110002, China;
Cite this article: 

ZHAO Bing, XU Dake, SUN Ziqing, REN Yibin, ZHAN Desong, XIAO Keshen, YANG Ke. In Vitro Biocompatibility and Antibacterial Property of a Novel Magnesium Phosphate Whisker. Chinese Journal of Materials Research, 2016, 30(3): 220-228.

Download:  HTML  PDF(3381KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The in vitro biocompatibility of a novel magnesium phosphate whisker (M-PW) was evaluated by real-time cellular analysis (RTCA) and Annexin-V/PI double marking methods, and its antibacterial property was evaluated by co-culture method. Results show that the in vitro biocompatibility of the M-PW decreased with the increase of M-PW in the suspensions. It possessed excellent in vitro biocompatibility for the suspensions containing 500 μg/mL or lower amount of the M-PW. It had no toxic effect on osteoblast cells for the suspension with 50 and 200 μg/mL of M-PW respectively. The antibacterial efficacy of the suspensions increased with the increasing amount of M-PW. The antibacterial efficacy against Escherichia coli and Staphylococcus aureus achieved 96.84% and 99.93% respectively for the suspension with 500 μg/mL of M-PW, demonstrating that the novel phosphorous-magnesium whisker possesses excellent antibacterial property.

Key words:  inorganic non-metallic materials      magnesium phosphate whisker      biocompatibility      antibacterial property      apoptosis      RTCA     
Received:  17 November 2015     
ZTFLH:  TB321  
Fund: *Supported by Shenyang Science and Technology Project No. F16-206-9-14.
About author:  **To whom correspondence should be addressed, Tel: (024)22891863, E-mail: zhandesong@126.com.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.643     OR     https://www.cjmr.org/EN/Y2016/V30/I3/220

Fig.1  SEM micrograph of phosphorus-magnesium whisker
Groups (μg/mL) pH
50 7.50±0.18
200 7.95±0.17
500 8.03±0.23
1000 8.15±0.14
Blank 7.44±0.19
Table 1  pH of the whisker treated groups and blank group in α-MEM medium without addition of MC3T3-E1 cell (n=5)
Fig.2  Real time cell analysis (RTCA) profiling of the four treated groups of phosphorus-magnesium whisker and the blank group for MC3T3-E1 mouse cells Blank group; 50 μg/mL phosphorus-magnesium whisker; 200 μg/mL phosphorus-magnesium whisker; 500 μg/mL phosphorus-magnesium whisker; 1000 μg/mL phosphorus-magnesium whisker
Groups (μg/mL) 24 h 48 h 72 h 96 h 120 h
50 80.65% 84.21% 85.33% 93.75% 102.18%
200 84.67% 83.37% 82.20% 92.09% 98.32%
500 71.70% 91.73% 89.56% 84.97% 83.31%
1000 36.91% 42.18% 56.38% 64.02% 68.43%
Table 2  Cell relative growth rate (RGR) of MC3T3-E1 cells treated with 4 different concentrations of phosphorus-magnesium whisker
Groups (μg/mL) 24 h 48 h 72 h 96 h 120 h
50 1 1 1 1 0
200 1 1 1 1 1
500 2 1 1 1 1
1000 3 3 3 2 2
Table 3  Cytotoxicity levels of MC3T3-E1 cells treated with 4 different concentrations of phosphorus-magnesium whisker
Fig.3  MC3T3-E1 cell apoptosis detected by Annexin V/PI with flow cytometry after 48 h (a) Blank group; (b) 50 μg/mL phosphorus-magnesium whisker; (c) 200 μg/mL phosphorus-magnesium whisker; (d) 500 μg/mL phosphorus-magnesium whisker; (e) 1000 μg/mL phosphorus-magnesium whisker
Groups
(μg/mL)
Cell apoptosis rate P
50 3.59±0.51 0.315*
200 3.62±0.60 0.286*
500 4.05±0.81 0.070*
1000 9.69±0.48 0.000*
Blank 3.08±0.29
Table 4  Apoptosis results measured by flow cytometry after 48 h
Group
(μg/mL)
E.coli S.aureus
pH Sterilizing rate pH Sterilizing rate
50 8.86±0.14 82.78% 9.37±0.13 80.13%
200 9.08±0.10 86.76% 9.62±0.09 96.53%
500 9.23±0.17 96.84% 9.86±0.12 99.93%
1000 9.57±0.19 99.96% 10.23±0.25 99.99%
Blank 7.19±0.19 7.38±0.15
Table 5  Antibacterial rate against E.coli and S.aureus treated with four different concentrations of phosphorus-magnesium whisker (n=5)
Fig.4  Antibacterial effect of phosphorus-magnesium whisker against E.coli and S.aureus (a) Blank group (E.coli); (b) treated with 50 μg/mL whisker (E.coli); (c) treated with 1000 μg/mL whisker (E.coli); (d) Blank group (S.aureus); (e) treated with 50 μg/mL whisker (S.aureus); (f) treated with 1000 μg/mL whisker (S.aureus)
Fig.5  A schematic illustration of the bactericidal process of phosphorus-magnesium whisker
1 G. Y. Liu, S. Tang, D. Li, J. Hu, Self-adjustment of calcium phosphate coating on micro-arc oxidized magnesium and its influence on the corrosion behaviour in simulated body fluids, Corros. Sci., 79(3), 206(2014)
2 G. L. Converse, Y. Weimin, R. K. Roeder, Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone, Biomaterials, 28(6), 927(2007)
3 H. H. K.Xua, J. B. Quinn, D. T. Smith, J. M. Antonucci, G. E. Schumacher, F. C. Eichmiller, Dental resin composites containing silica-fused whiskers effects of whisker-to-silica ration on fracture toughness and indentation properties, Biomaterials, 23(3), 735(2002)
4 M. B. Nair, J. D. Kretlow, A. G. Mikos, F. K. Kasper, Infection and tissue engineering in segmental bone defects-a mini review, Curr. Opin. Biotechnol., 22(5), 721(2011)
5 T. J. Ryan, Infection following soft tissue injury: its role in wound healing, Curr. Opin. Infect. Dis., 20(2), 124(2007)
6 E. M. Hetrick, M. H. Schoenfisch, Reducing implant-related infections: active release strategies, Chem. Soc. Rev., 35(9), 780(2006)
7 M. Braddock, P. Houston, C. Campbell, P. Ashcroft, Born again bone: Tissue engineering for bone repair, News in Physiology Sciences, 16(5), 208(2001)
8 H. Hu, G. Xu, Q. Zan, J. Liu, R. Liu, Z. Shen, X. Ye, In situ formation of nano-hydroxyapatite whisker reinfoced porous β-TCP scaffolds, Microelectronic Engineering, 98, 566(2012)
9 R. J. Kane, H. E.Weiss-Bilka, M. J. Meagher, Y. Liu, J. A. Gargac, G. L. Niebur, D. R. Wagner, R. K. Roeder, Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties, Acta Biomaterialia, 17(6), 16(2015)
10 F. A. Müller, U. Gbureck, T. Kasuga, Y. Mizutani, J. E. Barralet, U. Lohbauer, Whisker-reinforced calcium phosphate cements, J. Am. Ceram. Soc., 90(11), 3694(2007)
11 S. Bose, A.Banerjee, S. Dasgupta, A. Bandyopadhyay, Synthesis, processing, mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites, J. Am. Ceram. Soc., 92(2), 323(2009)
12 SHI Lei, SONG Aiyang, GONG Haihuan, FENG Dan, JIN Jie, ZHU Song, Chinese Journal of Practical Stomatology, 8(3), 180(2015)
(石磊, 宋艾阳, 宫海环, 冯丹, 金杰, 朱松, 纳米复合树脂研究进展, 中国实用口腔科杂志, 8(3), 180(2015))
13 F. Liu, B. Sun, X. Jiang, S. S. Aldeyab, Q. Zhang, M. Zhu, Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite, Dent. Mater., 30(12), 1358(2014)
14 WANG Rong, ZHANG Wenyun, JIA Anqi, SUN Linhui, Effects of different kinds and usage amounts of whisker fillers on mechanical properties of resin composite, Journal of Oral Science Research, 23(4), 365(2007)
(王蓉, 张文云, 贾安, 孙林辉, 不同晶须及晶须用量对复合树脂力学性能的影响, 口腔医学研究, 23(4), 365(2007))
15 NIU Lina, CHEN Jihua, FANG Ming, YANG Jucai, JIAO Kai, Effects of tetrapod-like zinc oxide whiskers incorporation on antibacterial activity of composite resin, Chin. J. Stomatol., 44(4), 240(2009)
(牛丽娜, 陈吉华, 方明, 杨聚才, 焦凯, 四针状氧化锌晶须对复合树脂抗菌性能的影响, 中华口腔医学杂志, 44(4), 240(2009))
16 S. N. Garcia, L Gutierrez, A McNulty, Real-time cellular analysis as a novel approach for in vitro cytotoxicity testing of medical device extracts, J. Biomed. Mater., 101(7), 2097(2013)
17 J. Xia, C. Yang, D. Xu, D. Sun, L. Nan, Z. Sun, Q. Li, T. Gu, K. Yang, Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm, Biofouling, 31(6), 481(2015)
18 LI Wu, JIN Zhiliang, ZHANG Zhihong, Application and synthesis of inorganic whisker materials, Progress in Chemistry, 15(4), 264(2003)
(李武, 靳治良, 张志宏, 无机晶须材料的合成与应用, 化学进展, 15(4), 264(2003))
19 XU Zhaoyu, Research progress of whisker and its application, Technology & Development of Chemical Industry, 34(2), 11(2005)
(徐兆瑜, 晶须的研究和应用新进展, 化工技术与开发, 34(2), 11(2005) )
20 C. J. Holmes, D Faict, Peritoneal dialysis solution biocompatibility: Definitions and evaluation strategies, Kidney. Int., 64(88), S50(2003)
21 N. Ke, X. Wang, X. Xu, Y. A. Abassi, The xCELLigence system for real-time and label-free monitoring of cell viability, Methods Mol. Biol., 740, 33(2011)
22 K. Solly, X. Wang, X. Xu, B. Strulovici, W Zheng,Application of real- time cell electronic sensing (RT-CES) technology to cell-based assays, Assay Drug Dev. Technol., 2(4), 363(2004)
23 A. Konjhodzic, S. Jakupovic, L. Hasic-Brankovic, A.Vukovic, Evaluation of Biocompatibility of Root Canal Sealers on L929 Fibroblasts with Multiscan EX Spectrophotometer, Acta Informatica Medica, 23(3), 135(2015)
24 J. Gu, R. Sun, S. Shen, Z. Yu, The influence of TLR4 agonist lipopolysaccharides on hepatocellular carcinoma cells and the feasibility of its application in treating liver cancer, Onco Targets and Therapy, 8, 2215(2015)
25 ZHAO Xin, CAO Yang, YIN Zhun, ZHANG Guangping, REN Yibin, ZHAN Desong, In vitro biocompatibility of Co-Cr alloys with different content of copper, Chinese Journal of Materials Rearch, 29(7), 628(2015)
(赵昕, 曹阳, 印准, 张光平, 任伊宾, 战德松, 不同铜含量钴铬合金的体外生物相容性, 材料研究学报, 29(7), 628(2015))
26 J. Z. Xing, L. Zhu, J. A. Jackson, S. Gabos, X. J. Sun, X. B. Wang, X. Xu, Dynamic monitoring of cytotoxicity on microelectronic sensors, Chem. Res. Toxicol., 18(2), 154(2005)
27 J. J. Quereda, L. Martínez-Alarcón, L. Mendoça, M. J. J. M. Majado, Herrero-Medrano, F.J. Pallarés, A. Ríos, P. Ramírez, A. Muñoz, G. Ramis, Validation of xCELLigence real-time cell analyzer to assess compatibility in xenotransplantation with pig-to-baboon model, Trans- plant Proc., 42(8), 3239(2010)
28 J. T. Irelan, M. J. Wu, J. Morgan, K. Ning, B. Xi, X. Wang, X. Xu, Y. A. Abasi, Rapid and quantitative assessment of cell quality, identity, and functionality for cell-based assays using real-time cellular analysis, J. Biomol. Screen., 16(3), 313(2011)
29 DA. Robinson, RW. Griffith, D. Shechtman, RB. Evans, MG. Conzemius, In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, Acta Biomater, 6(5), 1869(2010)
30 B. S. Kim, J. S. Kim, Y. M. Park, B. Y. Choi, J. Lee, Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell, Materials Science and Enginerring: C, 33(3), 1554(2013)
31 G. Wang, J. Li, W. Zhang, L. Xu, H. Pan, J. Wen, Q. Wu, W. She, T. Jiao, X. Liu, X. Jiang, Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function, Int. J. Nanomedicine., 9(1), 2387(2014)
32 Y. T. Sul, C. Johansson, A. Wennerberg, L. R. Cho, B. S. Chang, T. Albrektsson, Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure, Int. J. Oral Maxillofac. Implants, 20(3), 349(2005)
33 WANG Jian, MA Xiangyu, FENG Yafei, MA Tiancheng, LEI Wei, WANG Lin, Promotive effect of magnesium ions on viability and differentiation of osteoblasts and underlying mechanism, Progress in Modern Biomedicine, 15(15), 2836(2015)
(王健, 马翔宇, 冯亚非, 马田成, 雷伟, 王林, 镁离子对成骨细胞活力和分化的促进作用及其机制研究, 现代生物医学进展, 15(15), 2836(2015))
34 YUAN Guangyin, ZHANG Xiaobo, NIU Jialin, TAO Hairong, CHEN Daoyun, HE Yaohua, JIANG Yao, DING Wenjiang, Research progress of new type of degradable biomedical magnesium alloys JDBM, The Chinese Journal of Nonferrous Metals, 21(10), 2476(2011)
(袁广银, 章晓波, 牛佳林, 陶海荣, 陈道运, 何耀华, 蒋垚, 丁文江, 新型可降解生物医用镁合金JDBM的研究进展, 中国有色金属学报, 21(10), 2476(2011))
35 YUAN Guangyin, ZHANG Jia, DING Wenjiang, Research Progress of Mg-based alloys as degradable biomedical materials, Materials China, 30(2), 44(2011)
(袁广银, 张佳, 丁文江, 可降解医用镁基生物材料的研究进展, 中国材料进展, 30(2), 44(2011))
36 LÜ Yiming, HAN Pei, JI Weiping, CHAI Yimin, Effects of concentrations of magnesium ions on behavior of fibroblasts and osteoblasts, Chin. J. Orthop. Trauma., 15(12), 1065(2013)
(吕一鸣, 韩培, 嵇伟平, 柴益民, 不同浓度镁离子对成纤维细胞和成骨细胞影响的体外试验研究, 中华创伤骨科杂志, 15(12), 1065(2013))
37 K. Mansfield, R. Rajpurohit, I. M. Shapiro, Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes, Cell Physiol., 179(3), 276(1999)
38 Z. Meleti, I. M. Shapiro, C. S. Adams, Inorganic phosphate induces apoptosis of osteoblast-like cells in culture, Bone, 27(3), 359(2000)
39 J. Rundegren, T. Sjodin, L. Petersson, E. Hansson, Jonsson, Delmopinol interactions with cell walls of gram-negative and gram-positive oral bacteria, Oral Microbiology & Immunology, 10(2), 102(1995)
40 LI Xiangyang, SHAO Weihua, DIAO Enjie, ZHANG Honglin, Inhibition study on E. coli by temperature, pH and natural drug with microcalorimetric method, Food Science, 28(06), 252(2007)
(李向阳, 邵卫华, 刁恩杰, 张洪林, 温度,pH,药物对大肠杆菌抑制作用的量热法研究, 食品科学, 28(06), 252(2007))
41 P. Stoor, E. Soderling, J. I. Salonen, Antibacterial effects of a bioactive glass paste on oral microorganisms, Acta Odontol. Scand., 56(3), 161(1998)
42 I. Allan, H. Newman, M. Wilson, Antibacterial activity of particulate bioglass against supra- and subgingival bacteria, Biomaterials, 22(12), 1683(2001)
43 S. Hu, J. Chang, M. Liu, C. Ning, Study on antibacterial effect of 45S5 Bioglass, J. Mater. Sci. Mater. Med., 20(1), 281(2009)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!