Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (5): 539-544    
  研究论文 本期目录 | 过刊浏览 |
TiC/Ti3SiC2泡沫陶瓷的制备和性能
高勇, 徐兴祥, 杨振明, 张劲松
中国科学院金属研究所 沈阳 110016
Preparation and Properties of TiC/Ti3SiC2 Foam Ceramics
GAO Yong, XU Xingxiang, YANG Zhenming, ZHANG Jinsong
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

高勇 徐兴祥 杨振明 张劲松. TiC/Ti3SiC2泡沫陶瓷的制备和性能[J]. 材料研究学报, 2011, 25(5): 539-544.
, , , . Preparation and Properties of TiC/Ti3SiC2 Foam Ceramics[J]. Chin J Mater Res, 2011, 25(5): 539-544.

全文: PDF(1040 KB)  
摘要: 采用聚氨酯泡沫为原始骨架, 用高频感应加热反应熔渗制备TiC/Ti3SiC2泡沫陶瓷, 研究了在制备过程中不同阶段泡沫体的Ti含量对其相组成、微区化学成分、显微组织以及抗压缩性能的影响。结果表明, 随着泡沫体中Ti含量的增加, 在其骨架中相继生成TiC、Ti3SiC2及少量的Ti5Si3, 骨架的致密度提高, 泡沫材料的表观抗压强度增大。最终制得的TiC/Ti3SiC2泡沫陶瓷具有三维连通网络结构, 其平均表观抗压强度为19.4 MPa。
关键词 无机非金属材料泡沫陶瓷高频感应加热TiC-Ti3SiC2力学性能    
Abstract:The TiC/Ti3SiC2 foam ceramics was prepared by high frequency induction heating reaction-melting infiltration using polyurethane foam as primary skeleton. The phase composition, microarea chemical content, micro morphology and structure, and apparent anti-compression properties of the foam materials obtained at different processing stages are investigated. The results show that the TiC/Ti3SiC2 foam ceramics consist of 3-D interconnected network frame of TiC, Ti3SiC2, and Ti5Si3 successively formed with the increasing of Ti content. The average apparent compressive strength of the prepared foam materials rises during reaction-melting infiltration, and reaches to 19.4 MPa when TiC/Ti3SiC2 foam ceramics formed.
Key wordsinorganic non-metallic materials    foam ceramics    high frequency induction heating    TiC-Ti3SiC2    mechanical properties
收稿日期: 2011-08-11     
ZTFLH: 

TB321

 
1 M.W.Barsoum, The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates, Progress in Solid State Chemistry, 28(1–4), 201(2000)

2 M.W.Barsoum, in:Encyclopedia of Materials: Science and Technology, Physical properties of the MAX phases, edited by K.H.J. Buschow, R.W. Cahn, M.C.Flemings, B.Ilschner, E.J.Kramer, S.Mahajan, P. Veyssi`ere (Oxford, Elsevier, 2006)p.1

3 M.W.Barsoum, M.Radovic, in: Encyclopedia of Materials: Science and Technology, Mechanical properties of the MAX phases, edited by K.H.J.Buschow, R.W.Cahn, M.C.Flemings, B.Ilschner, E.J.Kramer, S.Mahajan, P.Veyssi`ere (Oxford, Elsevier, 2004)p.1

4 C.Racault, F.Langlais, R.Naslain, Solid-state synthesis and characterization of the ternary phase Ti3SiC2, Journal of Materials Science, 29(13), 3384(1994)5 P.V.Istomin, A.V.Nadutkin, Yu.I.Ryabkov, B.A.Goldin, Preparation of Ti3SiC2, Inorganic Materials, 42(3), 250(2006)

6 M.W.Barsoum, T.El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2, Journal of the American Ceramic Society, 79(7), 1953(1996) 

7 GAN Guoyou, CHEN Jingchao, SUN Jialin, ZHOU Xiaolong, CHEN Xiuhua, DU Yan, Stabilized chemical potential diagrams for Ti–Si–C ternary system at 1200 w and their applications, Journal of Kunming University of Science and Technology, 27(1), 34(2002)

(甘国有, 陈敬超, 孙加林, 周晓龙, 陈秀华, 杜 焰, Ti--Si--C三元系化学势稳定性相图及其应用, 昆明理工大学学报, 27(1), 34(2002))

8 W.B.Tian, Z.M.Sun, H.Hashimoto, Y.L.Du, Microstructural evolution and mechanical properties of Ti3SiC2–TiC composites, Journal of Alloys and Compounds, 502(1), 49(2010)

9 J.F.Zhang, L.J.Wang, W.Jiang, L.D.Chen, Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering,

Materials Science and Engineering A, 487(1–2), 137(2008)

10 B.Y.Liang, X.Han, Q.Zou, Y.C.Zhao, M.Z.Wang, TiC/Ti3SiC2 composite prepared by mechanical alloying, International Journal of Refractory Metals and Hard Materials, 27(3), 664(2009)

11 S.Konoplyuk, T.Abe, T.Uchimoto, T.Takagi, Ti3SiC2/TiC composites prepared by PDS, Journal of Materials Science, 40(13), 3409(2005)

12 XING Hongwei, CAO Xiaoming, HU Wanping, ZHAO Longzhi, ZHANG Jinsong, Solidification microstructure of 3D–meshy SiC/Cu metalmatrix composites, Chinese Journal of Materials Research, 18(6), 597(2004)

(邢宏伟, 曹小明, 胡宛平, 赵龙志, 张劲松, 三维网络SiC/Cu金属基复合材料的凝固显微组织, 材料研究学报, 18(6), 597(2004))

13 M.Naka, J.C.Feng, J.C.Schuster, Phase stability of SiC against Ti at high temperature, Vacuum, 83(1), 223(2009)

14 M.Naka, J.C.Feng, J.C.Schuster, Phase reaction and diffusion path of the SiC/Ti system, Metallurgical and Materials Transactions A, 28(6), 1385(1997)

15 W.J.J.Wakelkamp, F.J.J.van Loo, R.Metselaar, Phase relations in the Ti–Si–C system, Journal of the European Ceramic Society, 8(3), 135(1991)

16 D.Bandyopadhyay, The Ti–Si–C system (Titanium- Silicon-Carbon), Journal of Phase Equilibria and Diffusion, 25(5), 415(2004)

17 ZHANG Yong, LIN Junpin, LIU Danmei, CHEN Guoliang, The intersinew pores in TiC ceramic foam, Cemented Carbide, 12(3), 146(1995)

(张 勇, 林均品, 刘丹梅, 陈国良, 碳化钛泡沫陶瓷的筋内孔隙, 硬质合金, 12(3), 146(1995))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[8] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[9] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[10] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[11] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.