Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (5): 381-387    DOI: 10.11901/1005.3093.2017.600
  研究论文 本期目录 | 过刊浏览 |
轴向磁场对电弧离子镀TiN/Cu薄膜性能的影响
赵升升1(), 赵彦辉2, 陈伟1, 费加喜1, 王铁钢3()
1 深圳职业技术学院 深圳 518055
2 中国科学院金属研究所 沈阳 110016
3 天津职业技术师范大学 天津市高速切削与精密加工重点实验室 天津 300222
Effect of Axial Magnetic Field on Property of TiN/Cu Films Deposited by Arc Ion Plating
Shengsheng ZHAO1(), Yanhui ZHAO2, Wei CHEN1, Jiaxi FEI1, Tiegang WANG3()
1 Shenzhen Polytechnic, Shenzhen 518055, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Tianjin University of Technology and Education, Tianjin 300222, China
引用本文:

赵升升, 赵彦辉, 陈伟, 费加喜, 王铁钢. 轴向磁场对电弧离子镀TiN/Cu薄膜性能的影响[J]. 材料研究学报, 2018, 32(5): 381-387.
Shengsheng ZHAO, Yanhui ZHAO, Wei CHEN, Jiaxi FEI, Tiegang WANG. Effect of Axial Magnetic Field on Property of TiN/Cu Films Deposited by Arc Ion Plating[J]. Chinese Journal of Materials Research, 2018, 32(5): 381-387.

全文: PDF(3254 KB)   HTML
摘要: 

使用加可调轴向磁场的电弧离子镀设备在不锈钢基体上制备TiN/Cu薄膜,研究了轴向磁场强度对薄膜微观结构、化学成分、力学性能和耐磨性能的影响。结果表明,在不同强度的磁场下TiN/Cu薄膜具有相同的TiN结构,且以沿TiN(111)面的择优取向为主。随着磁场强度的提高(111)面衍射峰的强度逐渐提高、TiN/Cu薄膜表面的粗糙度先降低后提高、薄膜中Cu的含量逐渐提高、硬度和弹性模量也逐渐提高、薄膜的磨损率先降低后提高。当磁场强度为80 Gs时薄膜的硬度达到约为36 GPa的最大值,耐磨性能最高。

关键词 TiN/Cu薄膜轴向磁场电弧离子镀硬度耐磨性    
Abstract

TiN/Cu thin films were prepared on stainless steel substrate by arc ion plating with adjustable axial magnetic field. The effect of axial magnetic field intensity on the microstructure, chemical composition, mechanical properties and wear resistance of the films were investigated. Results indicated that all the TiN/Cu thin films deposited by different magnetic field intensity have the same crystallographic structure as TiN with preferential orientation (111). With the increasing magnetic field intensity, the diffraction peak intensity of (111) crystal plane significantly enhanced; the surface roughness of TiN/Cu film decreased first and then increased; the Cu content of the film increased gradually; the hardness and elastic modulus of the TiN/Cu film also increased and the wear rate first decreased then increased. When the magnetic field strength reached 80 Gs, the resulted film possessed the highest hardness about 36 GPa and the optimal wear resistance.

Key wordsTiN/Cu films    axial magnetic field    arc ion plating    hardness    wear resistance
收稿日期: 2017-10-12     
基金资助:资助项目 国家自然科学基金(51401128,51301181)
作者简介:

作者简介 赵升升,男,1979年生,副教授

图1  磁场增强电弧离子镀系统的示意图
图2  磁场强度不同TiN/Cu薄膜的SEM图像和表面粗糙度
图3  TiN/Cu薄膜的化学成分与磁场强度的关系
图4  磁场强度为0 Gs和120 Gs时TiN/Cu薄膜的XPS
图5  在不同磁场强度下TiN/Cu薄膜的XRD
图6  磁场强度为80 Gs的TiN/Cu薄膜的TEM截面形貌和衍射图谱
图7  TiN/Cu薄膜的硬度和弹性模量与磁场强度的关系
图8  TiN/Cu薄膜的H 3/E *2值(a)和H/E *值(b)与磁场强度的关系
图9  TiN/Cu薄膜的磨损率、摩擦系数和残余应力与磁场强度关系
[1] Bergmann E, Vogel J, Simmen L.Failure mode analysis of coated tools[J]. Thin Solid Films, 1987, 153(1-3): 219
[2] Goldfarb I, Pelleg J, Zevin L, et al.Lattice distortion in thin films of IVB metal (Ti, Zr, Hr) nitrides[J]. Thin Solid Films, 1991, 200(1): 117
[3] Veprek S, Veprek-Heijman M G J, Karvankova P, et al. Different approaches to superhard coatings and nanocomposites[J]. Thin Solid Films, 2005, 476(1): 1
[4] Voevodin A A, Zabinski J S.Nanocomposite and nanostructured tribological materials for space applications[J]. Composites Science and Technology, 2005, 65(5): 741
[5] Musil J.Hard and superhard nanocomposite coatings[J]. Surface and Coatings Technology, 2000, 125(1): 322
[6] Myung H S, Lee H M, Shaginyan L R, et al.Microstructure and mechanical properties of Cu doped TiN superhard nanocomposite coatings[J]. Surface and Coatings Technology, 2003, 163: 591
[7] Wu H, Zhang X, He X, et al.Wear and corrosion resistance of anti-bacterial Ti-Cu-N coatings on titanium implants[J]. Applied Surface Science, 2014, 317: 614
[8] Pinakidou F, Katsikini M, Patsalas P, et al.On the nanostructure of Cu in TixCu1-x and TiN/Cu films: a XAFS study[J]. Journal of Nano Research. Trans Tech Publications, 2009, 6: 43
[9] Li Z G, Miyake S, Kumagai M, et al.Hard nanocomposite Ti-Cu-N films prepared by dc reactive magnetron co-sputtering[J]. Surface and Coatings Technology, 2004, 183(1): 62
[10] Myung H S, Han J G, Boo J H.A study on the synthesis and formation behavior of nanostructured TiN films by copper doping[J]. Surface and Coatings Technology, 2004, 177: 404
[11] Aksenov I I, Padalka V G, Tolok V T, et al.Motion of plasma streams from a vacuum arc in a long, straight plasma-optics system[J]. Soviet Journal of Plasma Physics, 1980, 6: 918
[12] Sanders D M, Pyle E A.Magnetic enhancement of cathodic arc deposition[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1987, 5(4): 2728
[13] Martin P J, Bendavid A.Review of the filtered vacuum arc process and materials deposition[J]. Thin Solid Films, 2001, 394(1): 1
[14] Bilek M M M, Yin Y, McKenzie D R, et al. Ion transport mechanisms in a filtered cathodic vacuum arc (FCVA) system [A]. Discharges and Electrical Insulation in Vacuum, 1996. Proceedings. ISDEIV., XVIIth International Symposium on. IEEE[C]. 1996, 2: 962
[15] Taylor M B, Partridge J G, McCulloch D G, et al. The influence of deposition rate on the stress and microstructure of AlN films deposited from a filtered cathodic vacuum arc[J]. Thin Solid Films, 2011, 519(11): 3573
[16] Cluggish B P.Transport of a cathodic arc plasma in a straight, magnetized duct[J]. IEEE Transactions on Plasma Science, 1998, 26(6): 1645
[17] Anders A, Yushkov G Y.Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field[J]. Journal of Applied Physics, 2002, 91(8): 4824
[18] Oks E M, Brown I G, Dickinson M R, et al.Elevated ion charge states in vacuum arc plasmas in a magnetic field[J]. Applied Physics Letters, 1995, 67(2): 200
[19] Oks E M, Brown I G, Dickinson M R, et al.Elevated ion charge states in vacuum arc plasmas in a magnetic field[J]. Applied Physics Letters, 1995, 67(2): 200
[20] Plyutto A A, Ryzhkov V N, Kapin A T.High-velocity streams of vacuum arc plasma[J]. Zh. Eksp. Teor. Fiz, 1964, 47.
[21] Anders A, Yushkov G, Oks E, et al.Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields[J]. Review of Scientific Instruments, 1998, 69(3): 1332
[22] Sanders D M.Review of ion-based coating processes derived from the cathodic arc[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1989, 7(3): 2339
[23] Yoon J S, Han J G.The ion current density and spectroscopic study in a straight magnetic filtering arc deposition system[J]. Surface and Coatings Technology, 1997, 94: 201
[24] Zhao S S, Du H, Hua W G, et al.The depth distribution of residual stresses in (Ti, Al) N films: Measurement and analysis[J]. Journal of Materials Research, 2007, 22(10): 2659
[25] Wang T G, Jeong D, Liu Y, et al.Study on nanocrystalline Cr 2 O 3 films deposited by arc ion plating: II. Mechanical and tribological properties[J]. Surface and Coatings Technology, 2012, 206(10): 2638
[26] Smentkowski V S.Trends in sputtering[J]. Progress in Surface Science, 2000, 64(1): 1
[27] Tian L, Zhang Y, Ma Y, et al.Effect of Cu content and ion beam bombardment on microstructure and mechanical properties of Cr-Cu-N films[J]. Surface and Coatings Technology, 2013, 228: S495
[28] Wang H, Shu X, Guo M, et al.Structural, tribological and antibacterial activities of Ti-Cu-N hard coatings prepared by plasma surface alloying technique[J]. Surface and Coatings Technology, 2013, 235: 235
[29] Martin P J, Bendavid A, Kinder T J.The deposition of TiN thin films by filtered cathodic arc techniques[J]. IEEE Transactions on Plasma Science, 1997, 25(4): 675
[30] Yu G Q, Tay B K, Lau S P, et al.Effects of N ion energy on titanium nitride films deposited by ion assisted filtered cathodic vacuum arc[J]. Chemical Physics Letters, 2003, 374(3): 264
[31] Jiménez H, Restrepo E, Devia A.Effect of the substrate temperature in ZrN coatings grown by the pulsed arc technique studied by XRD[J]. Surface and Coatings Technology, 2006, 201(3): 1594
[32] Pelleg J, Zevin L Z, Lungo S, Croitoru N.Reactive-sputter-deposited TiN films on glass substrates[J]. Thin Solid Films, 1991, 197: 117
[33] Jiménez H, Restrepo E, Devia A.Effect of the substrate temperature in ZrN coatings grown by the pulsed arc technique studied by XRD[J]. Surface and Coatings Technology, 2006, 201(3): 1594-1601
[34] Toth L E.Transition Metal Carbides and Nitrides [M]. New York: Academic Press, 1971
[35] Musil J, Daniel R.Structure and mechanical properties of magnetron sputtered Zr-Ti-Cu-N films[J]. Surface and Coatings Technology, 2003, 166(2): 243
[36] Davis C A, A simple model for the formation of compressive stress in thin films by ion bombardment[J]. Thin Solid Films, 1993, 226: 30
[37] Niu E W, Li L, Lv G H,et al. Influence of substrate bias on the structure and properties of ZrN films deposited by cathodic vacuum arc. Materials Science and Engineering A [J].2007, 460-461: 135
[38] Ge F F, Zhu P, Meng F P, Huang F. Enhancing the wear resistance of magnetron sputtered VN coating by Si addition [J]. Wear , 2016, 354-355: 32
[1] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[2] 田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
[3] 张钧, 彭立静, 王宇, 王晓阳, 王楠, 王美涵. Al/Ti摩尔比对(CrTiAl)N硬质膜相结构和硬度的影响[J]. 材料研究学报, 2022, 36(1): 55-61.
[4] 李刚, 温影, 于中民, 刘囝, 熊梓连. Al含量对CrFeNiAlxSi系高熵合金性能的影响[J]. 材料研究学报, 2021, 35(9): 712-720.
[5] 李宁宁, 陈旸, 陈希, 殷利迎, 陈光. 包埋渗铝法制备Fe-Al渗层及其扩散机制[J]. 材料研究学报, 2021, 35(8): 572-582.
[6] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[7] 郝欣欣, 席通, 张宏镇, 杨春光, 杨柯. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响[J]. 材料研究学报, 2021, 35(12): 933-941.
[8] 王芳, 周宝玉, 冯伟, 雷家柳, 姜玉凤, 王琦迪. 耐磨铝基超疏水材料的制备及其动态冷凝行为[J]. 材料研究学报, 2020, 34(4): 277-284.
[9] 贾建波,鹿超,杨志刚,董添添,顾勇飞,徐岩. 固溶+时效处理对粉末冶金Ti-22Al-25Nb合金显微硬度的影响[J]. 材料研究学报, 2020, 34(3): 198-208.
[10] 王斌,何燕萍,王昊杰,田勇,贾涛,王丙兴,王昭东. 航空齿轮钢16Cr3NiWMoVNbE的真空低压渗碳[J]. 材料研究学报, 2020, 34(1): 35-42.
[11] 冯凡凡,武会宾,于新攀. 纳米贝氏体/马氏体钢的热稳定性[J]. 材料研究学报, 2019, 33(8): 597-602.
[12] 张英东,李阁平,刘承泽,袁福森,韩福洲,Ali Muhanmmad,顾恒飞. TC11钛合金中 α''相和α'相的组织演变和显微硬度[J]. 材料研究学报, 2019, 33(6): 443-451.
[13] 张可,赵时雨,隋凤利,李昭东,叶晓瑜,孙新军,黄贞益,雍岐龙. 终轧温度对Ti-V-Mo复合微合金钢组织演变和硬度的影响[J]. 材料研究学报, 2019, 33(3): 191-198.
[14] 刘晓东,谈淑咏,霍文燚,张旭海,邵起越,方峰. 氮流量比对磁控溅射(CoCrFeNi)Nx高熵合金薄膜的组织和性能的影响[J]. 材料研究学报, 2019, 33(3): 185-190.
[15] 高硕洪, 刘敏, 庞晓军, 张小锋, 邓畅光, 梁兴华, 邓春明. 超疏水复合涂层的制备和性能研究[J]. 材料研究学报, 2018, 32(7): 502-512.