Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (1): 1-5    DOI:
论文 Current Issue | Archive | Adv Search |
Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy
ZHAO Liang; LIU Jianrong; WANG Qingjiang; YANG Rui
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

ZHAO Liang LIU Jianrong WANG Qingjiang YANG Rui . Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy. Chin J Mater Res, 2009, 23(1): 1-5.

Download:  PDF(721KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of Si in solution, silicide and α2 phase on the high temperature creep and creep rupture properties of Ti–60 titanium alloy was investigated. The results show that silicide precipitated between α plates increases the creep resistance at 600 oC, which becomes more pronounced when α2 phase precipitated in the matrix. However, the effect of silicide on the creep rupture property was negative when silicides exist in large size and amount. Precipitation of α2 phase was beneficial both to high temperature creep and creep rupture properties. Increase of silicide in solution by way of lowering the silicide precipitation was more beneficial to creep rupture properties with higher applied stress than to creep properties with lower applied stress. The underlying  mechanism under creep test condition can be rationalized by the different deformation mechanism under different applied stress.

Key words:  metallic materials      Ti60 alloy      high temperature titanium alloy      silicide      high temperature creep     
Received:  20 March 2008     
ZTFLH: 

TG113

 
Fund: 

Supported by National High-Tech Research and Development Program of China No.2007AA03A224.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I1/1

1 C.Leyens, M.Peters, Titanium and Titanium Alloys, translated by CHEN Zhenhua (Beijing, Chemical Industry Press, 2005) p.22
(C.莱茵斯, M.皮特尔斯, 钛与钛合金,  陈振华译(北京, 化学工业出版社, 2005) p.22)
2 H.W.Rosenberg, Titanium Science and Technology,edited by R.I.Jaffee and H.M.Burte (New York, Plenum Press, 1973) p.2127
3 H.M.Flower, P.R.Swann, D.R.F.West, Silicide precipitation in the Ti–Zr–Al–Si system, Metall. Trans., 2, 3289(1971)
4 W.Cho, J.W.Jones, J.E.Allison, W.T.Donlon, in: Sixth World Conference on Titanium, Vol. 1, edited by P.Lacombe, R.Tricot and G. B´eranger (Les Editions de Physique, Paris, 1988) p.187
5 B.Borcheat, M.A.Daeubler, in: Sixth World Conference on Titanium, edited by P.Lacombe, R.Tricot and G. B´eranger (Les Editions de Physique, Paris, 1988)p.467
6 S.Hardt, H.J.Maier, H.–J.Christ, High–temperature fatigue damage mechanisms in near–α titanium alloy IMI 834, Int. J. Fatigue, 21, 779(1999)
7 T.K.G.Namboodhiri, Jr, C.J.McMahon, H.Herman, Decomposition of the α–phase in titanium–rich Ti–Al alloys, Metall. Trans., 4, 1323(1973)
8 ZHANG Shangzhou, Effect of carbon on microstructure of Ti–60 high–temperature titanium alloy, Ph. D Dissertation, Institute of Metal Research, Chinese Academy of Sciences(2004)
(张尚洲, 碳对Ti--60高温钛合金组织演变的影响, 中国科学院金属研究所博士学位论文(2004))
9 ZHANG Jun, LI Dong, α2 Ordered Phase in High TemperatureTitanium Alloys (Shenyang, Northeastern University Press, 2002) p.20
(张钧, 李东, 高温钛合金中的α2 (沈阳, 东北大学出版社, 2002) p.20)
10 HU Qingmiao, First principles Investigation of the effects of alloying on the mechanical properties of titanium, Ph. D Dissertation, Institute of Metal Research, Chinese Academy of Sciences (2001)
(胡青苗, 合金化对钛合金力学性能影响的第一原理研究, 中国科学院金属研究所博士学位论文(2001))
11 Thomas H. Courtney, Mechanical Behavior of Materials (Beijing, China Machine Press, 2004) p.293
(Thomas H. Courtney著,  材料力学行为  (北京, 机械工业出版社, 2004) p.293)
12 CHEN Zhiyong, Microstructure, mechanical property and deformation behavior of electron beam weldment of titanium alloy Ti–60, Ph. D Dissertation, Institute of Metal Research, Chinese Academy of Sciences (2008)
(陈志勇, 高温钛合金Ti--60电子束焊接接头的显微组织、力学性能与变形行为研究, 中国科学院金属研究所博士学位论文(2008))
13 C.Ramachandra, V.K.Verma, V.Singh, Low cycle fatigue behaviour of titanium alloy 685, Int. J. Fatigue, 10, 21(1988)
14 C.Ramachandra, V.Singh, Effect of silicide precipitation on the low cycle fatigue behaviour of alloy Ti–6Al–5Zr–0.5Mo–0.25Si, Scr. Metall., 21, 633(1987)
15 W.J.Plumbridge, M.Stanley, Low cycle fatigue of a titanium 829 alloy, Int. J. Fatigue, 8, 206(1986)

[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!