Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (11): 813-823    DOI: 10.11901/1005.3093.2025.199
ARTICLES Current Issue | Archive | Adv Search |
Effect of Cu Content on Properties of Friction Stir Processed Mg-8Zn-xCu Alloys
DAI Hengxia1, DONG Xuguang1(), XUE Peng1,2, NI Dingrui2, Ma Zongyi1,2
1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

DAI Hengxia, DONG Xuguang, XUE Peng, NI Dingrui, Ma Zongyi. Effect of Cu Content on Properties of Friction Stir Processed Mg-8Zn-xCu Alloys. Chinese Journal of Materials Research, 2025, 39(11): 813-823.

Download:  HTML  PDF(28691KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three Mg-8Zn-xCu (x = 0, 0.5 and 1, mass fraction, %) alloys were prepared by friction stir processing (FSP). Meanwhile, the influence of Cu content on the formability and mechanical properties of FSP Mg-8Zn alloys at high rotation rate was investigated by differential thermal analysis (DTA) and backscattered electron (BSE) etc. It was found that with the increasing Cu content, the eutectic in the Mg-8Zn-xCu alloys was transformed from a low-melting-point binary eutectic (346 °C) to a high-melting-point ternary eutectic (434 °C) during solidification process. The predominant eutectic phase was evolved from the Mg7Zn3 to the MgZnCu phase. The elevated eutectic temperature effectively suppressed the liquation (i.e., liquid formation) and liquation-induced cracking during FSP. By a Cu content of 0.5%, most of the secondary phases were dissolved into the Mg matrix via the thermo-mechanical coupling effect of FSP. This resulted in a super high Zn solid solution content of 6.62% (mass fraction) in Mg matrix, approximately 4 times of the room-temperature equilibrium solubility. Compared with the FSP Mg-8Zn alloy, the FSP Mg-8Zn-0.5Cu alloy exhibits a 50 MPa increase in tensile strength, achieving 300 MPa, and the elongation to fracture significantly increases from 13.4% to 30.2%. It is the improvement of microstructural uniformity that leads to a simultaneous enhancement of strength and ductility, supplemented by the synergistic action of high-content Zn solid solution strengthening, grain refinement, and MgZn2 dynamic precipitation strengthening. As the Cu content was increased to 1%, stripe-like particle clusters formed within the processing zone due to the undissolved secondary phases, leading to a significant degradation in tensile properties.

Key words:  metallic materials      high-zinc magnesium alloy      friction stir processing      liquation-induced cracking      eutectic      solid solution     
Received:  10 June 2025     
ZTFLH:  TG146.22  
Fund: National Natural Science Foundation of China(52071317);Shenyang U40 Outstanding Youth Foundation(RC230864)
Corresponding Authors:  DONG Xuguang, Tel: 13555804884, E-mail: xgdong@sylu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2025.199     OR     https://www.cjmr.org/EN/Y2025/V39/I11/813

Element

Eutectic

temperature / oC

Eutectic reactionMaximum solid solubility / (mass fraction, %)Room-temperature solubility / (mass fraction, %)
Zn340L → Mg + MgZn/Mg7Zn36.21.7
Al437L → Mg + Mg17Al1217.42.5
Ca516L → Mg + Mg2Ca1.350.8
Nd548L → Mg + Mg41Nd53.60.2
Sn561L → Mg + Mg2Sn3.350.1
Y567L → Mg + Mg24Y512.53.4
Ce592L → Mg + Mg12Ce0.80.05
Li588L → Mg + β-Li (BCC)5.55.5
La613L → Mg + Mg12La0.80.2
Si638L → Mg + Mg2SiNegligibleNegligible
Mn6493.40.2
Table 1  Eutectic properties and solid solubility parameters of binary Mg-based alloys
Fig.1  SEM images of the as-cast microstructure (a) Mg-8Zn, (b) Mg-8Zn-0.5Cu, (c) Mg-8Zn-1Cu, (d) region 1, (e) region 2, (f) region 3
Fig.2  Mg-Zn binary phase diagram[17] (a) and enlarged diagram near the eutectic point [Mg-51.3Zn at 613 K (340 oC)] [19] (b)
Fig.3  DTA results of the as-cast alloys (a) Mg-8Zn, (b) Mg-8Zn-0.5Cu, (c) Mg-8Zn-1Cu
Fig.4  Surface morphologies of FSP samples
Fig.5  Cross-section morphologies of FSP Mg-8Zn alloy (a) macrostructures of processing zone, (b) enlarged SE image of region 1, (c) EDS map of intergranular eutectic film, (d) enlarged BSE image of region 2, (e) BSE image of upper processing zone, (f) BSE image of lower processing zone
Fig.6  Cross-section morphologies of FSP Mg-8Zn-xCu alloy (a) Mg-8Zn-0.5Cu, (b) Mg-8Zn-1Cu, (c) Mg-8Zn-0.5Cu, (d) EDS map of particles in Mg-8Zn-0.5Cu, (e) Mg-8Zn-1Cu, (f) magnification view of region 1
Fig.7  EBSD microstructures of Mg-8Zn-0.5Cu alloys (a) as-cast, (b) as-FSP
Fig.8  XRD patterns of Mg-8Zn alloys with Cu addition (a) XRD pattern of as-cast and FSP Mg-8Zn alloys, (b) enlarged image at 35°-45°
Fig.9  Morphology of nanoscale precipitates in the FSP Mg-8Zn-0.5Cu alloy (The electron beam was parallel to <112¯0> α )
Fig.10  Microhardness profile of FSP Mg-8Zn-xCu alloys at the cross-section
Fig.11  Engineering stress-strain curves of FSP Mg-8Zn-xCu alloys (a) and comparison of fracture elongation and ultimate tensile strength values in different FSP Mg-Zn alloys[23~30] (b)
Fig.12  Fracture morphologies of FSP Mg-8Zn-xCu alloys (a, b) Mg-8Zn, (c, d) Mg-8Zn-0.5Cu, (e, f) Mg-8Zn-1Cu, (a, c, e) SE, (b, d, f) BSE
[1] Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry [J]. Manned Spaceflight, 2016, 22: 281
吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望 [J]. 载人航天, 2016, 22: 281
[2] Weiler J P. A review of magnesium die-castings for closure applications [J]. J. Magnes. Alloy., 2019, 7: 297
[3] Shen Q Y, Ba Y X, Zhang P, et al. Recent progress in the research on magnesium and magnesium alloy foils: A short review [J]. Int. J. Miner. Metall. Mater., 2024, 31: 842
[4] Zhang Q H, Huang W G, Zheng T Q, et al. Influence of heat treatment on mechanical properties of Mg-Zn-Al alloy [J]. Hot Work. Technol., 2007, 36(8): 62
张青辉, 黄维刚, 郑天群 等. 热处理对Mg-Zn-Al合金力学性能的影响 [J]. 热加工工艺, 2007, 36(8): 62
[5] Fan Z B, Lin X P, Dong Y, et al. Age-hardening response for Mg96.17Zn3.15Y0.5Zr0.18 solid solution alloy under high pressure [J]. Acta Metall. Sin., 2016, 52: 1491
樊志斌, 林小娉, 董 允 等. Mg96.17Zn3.15Y0.5Zr0.18合金高压下固溶处理时效硬化研究 [J]. 金属学报, 2016, 52: 1491
[6] Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
[7] Liu B, Yang J, Zhang X Y, et al. Development and application of magnesium alloy parts for automotive OEMs: A review [J]. J. Magnes. Alloy., 2023, 11: 15
[8] Ma Z Y. Friction stir processing technology: A review [J]. Metall. Mater. Trans., 2008, 39A: 642
[9] Feng A H, Ma Z Y. Enhanced mechanical properties of Mg-Al-Zn cast alloy via friction stir processing [J]. Scr. Mater., 2007, 56: 397
[10] Palanivel S, Arora A, Doherty K J, et al. A framework for shear driven dissolution of thermally stable particles during friction stir welding and processing [J]. Mater. Sci. Eng., 2016, 678A: 308
[11] Yadav D, Bauri R, Chawake N. Fabrication of Al-Zn solid solution via friction stir processing [J]. Mater. Charact., 2018, 136: 221
[12] Wagner D C, Chai X, Tang X, et al. Liquation cracking in arc and friction-stir welding of Mg-Zn alloys [J]. Metall. Mater. Trans., 2015, 46A: 315
[13] Yang H, Xie W L, Song J F, et al. Current progress of research on heat-resistant Mg alloys: A review [J]. Int. J. Miner. Metall. Mater., 2024, 31: 1406
[14] Wang Y B, Huang Y X, Meng X C, et al. Microstructural evolution and mechanical properties of Mg-Zn-Y-Zr alloy during friction stir processing [J]. J. Alloy. Compd., 2017, 696: 875
[15] Zhou Y, Li S L, Mao P L, et al. Effect of copper addition on precipitation behaviors and mechanical properties of Mg-Zn-Cu alloys with respect to high zinc [J]. J. Magnes. Alloy., 2024, 12: 5194
[16] Chen Y F. Study on the strengthening mechanism of high abundance Rare-Earth elements Ce and Y in magnesium alloys [D]. Nanchang: Nanchang University, 2023
陈燕飞. 高丰度稀土元素Ce和Y对镁合金的强化机制研究 [D]. 南昌: 南昌大学, 2023
[17] Massalski T B. Binary Alloy Phase Diagrams [M]. Metals Park, OH: American Society for Metals, 1986
[18] Gao X, Nie J F. Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy [J]. Scr. Mater., 2007, 57: 655
[19] Clark J B, Abdyr L, Moser L. Mg-Zn (Magnesium-Zinc) Binary Alloy Phase Diagrams [A]. Binary Alloy Phase Diagrams (3 Volume Set) [C]. Metals Park, OH: American Society for Metals, 1990
[20] De Cicco M, Konishi H, Cao G P, et al. Strong, ductile magnesium-zinc nanocomposites [J]. Metall. Mater. Trans., 2009, 40A: 3038
[21] Gerlich A P, Shibayanagi T. Liquid film formation and cracking during friction stir welding [J]. Sci. Technol. Weld. Join., 2011, 16: 295
[22] Fu X S, Chen K, Zhang Q S, et al. Interfacial intermetallic compound layer in friction stir welded Mg/Al joints: Relationship between thickness and the welding temperature history [J]. J. Magnes. Alloy., 2025, 13: 2540
[23] Li J C, Huang Y X, Wang F F, et al. Enhanced strength and ductility of friction-stir-processed Mg-6Zn alloys via Y and Zr co-alloying [J]. Mater. Sci. Eng., 2020, 773A: 138877
[24] Wang H, Zhang D T, Cao G H, et al. Improving room-temperature ductility of a Mg-Zn-Ca alloy through friction stir processing [J]. J. Mater. Res. Technol., 2022, 17: 1176
[25] Elyasi M, Razaghian A, Moharami A, et al. Effect of zirconium micro-addition and multi-pass friction stir processing on microstructure and tensile properties of Mg-Zn-Si alloys [J]. J. Mater. Res. Technol., 2022, 20: 4269
[26] Elyasi M, Razaghian A, Moharami A, et al. Effects of multi-pass friction stir processing on mechanical and tribological properties of Mg-Zn-Zr alloys [J]. J. Mater. Res. Technol., 2023, 24: 4730
[27] Wang J, Fu R D, Hu T X, et al. Improvement of microstructures and mechanical properties of Mg-3Zn-0.5Zr by friction stir processing [J]. Mater. Sci. Eng., 2024, 897A: 146318
[28] Vargas M, Lathabai S, Uggowitzer P J, et al. Microstructure, crystallographic texture and mechanical behaviour of friction stir processed Mg-Zn-Ca-Zr alloy ZKX50 [J]. Mater. Sci. Eng., 2017, 685A: 253
[29] Yang Q, Feng A H, Xiao B L, et al. Influence of texture on superplastic behavior of friction stir processed ZK60 magnesium alloy [J]. Mater. Sci. Eng., 2012, 556A: 671
[30] Long F, Chen G Q, Zhou M R, et al. Simultaneous enhancement of mechanical properties and corrosion resistance of as-cast Mg-5Zn via microstructural modification by friction stir processing [J]. J. Magnes. Alloy., 2023, 11(6): 1931
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
No Suggested Reading articles found!