Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (12): 950-960    DOI: 10.11901/1005.3093.2024.050
ARTICLES Current Issue | Archive | Adv Search |
Polyporphyrin/MXene-based Self-supporting Composite Films and Photocatalytic Degradation of Pollutants
HUO Zhaohui(), WU Haojie, HE Yongqi, ZHENG Mingxiu, ZHAN Manzi, ZHANG Qitong, LIAO Xiaolin
School of Chemistry and Materials Science, GuangDong University of Education, Guangzhou 510303, China
Cite this article: 

HUO Zhaohui, WU Haojie, HE Yongqi, ZHENG Mingxiu, ZHAN Manzi, ZHANG Qitong, LIAO Xiaolin. Polyporphyrin/MXene-based Self-supporting Composite Films and Photocatalytic Degradation of Pollutants. Chinese Journal of Materials Research, 2024, 38(12): 950-960.

Download:  HTML  PDF(11543KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, photocatalyst composite films of polyporphyrin/MXene were prepared via anodic oxidation method with octaethyl porphyrin zinc and 4,4-bipyridine as monomers, and multi-layered Ti3C2 as MXene self-supporting film, with the aim to prepare a novel material with high-photocatalysis efficiency for degradation of dyestuffs wastewaters. The prepared catalyst was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, photoelectrochemical testing etc. The photocatalytic degradation effect of the synthesized self-supporting composite film photocatalyst on methylene blue was assessed through photocatalytic degradation testing. The results indicate that loading polyporphyrin onto MXene thin films can promote the separation of photo generated electron pairs, improve the efficiency of polyporphyrin photocatalysis, and achieve reusable recycling of materials. The increase in interlayer spacing of MXene was achieved by loading polyporphyrin onto the MXene through anodic oxidation, effectively solving the problem related with restacking and increasing the porosity of MXene. When the area of the polyporphyrin/MXene based composite film is 1 cm2 and the initial concentration of methylene blue is 10 mg/L, the degradation rate of methylene blue by the composite material reaches 98% after 80 minutes of illumination. The capture experiment shows that the main free radical playing a role in the photocatalytic degradation of methylene blue is h+.

Key words:  composite material      porphyrin      MXene self-supporting membrane      anodic oxidation method      photocatalytic      Methylene blue     
Received:  22 January 2024     
ZTFLH:  O643.36  
Fund: Guangdong Basic and Applied Basic Research Fund (Guangdong Guangzhou Joint Fund) Project(2023A1515111132);Guangzhou Basic and Applied Basic Project(202102020424);College Student Innovation and Entrepreneurship Training Program Project(202414278081);Guangdong Province Key Field Special Project for Ordinary Universities(2023ZDZX4043)
Corresponding Authors:  HUO Zhaohui, Tel: 13422197623, E-mail: huozhaohui@gdei.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.050     OR     https://www.cjmr.org/EN/Y2024/V38/I12/950

Fig.1  Schematic diagram of synthesis of the ZnOEP/MXene films
Fig.2  SEM diagram of Ti3AlC2 (a), Ti3C2 (b, c), Section diagram of MXene film (Ti3C2) (d), Section diagram of the ZnOEP/MXene films (e, f)
Fig.3  FT-IR profiles of the ZnOEP/MXene films
Fig.4  XRD spectrum of the ZnOEP/MXene films
Fig.5  XPS spectra of specific regions (a) Ti 2p, (b) O 1s, (c) N 1s, (d) C 1s and (e) Zn 2p
Fig.6  EIS profiles of the ZnOEP/MXene films (a) and the photocurrent curves of the ZnOEP/MXene films (b)
Type of adsorption kinetics

Experimental value of

qe / mg·g-1

Calculated value of

qe / mg·g-1

K1/ min-1K2/ g·mg-1·min-1R2
Pseudo first order kinetics4.32751.926458.0185-0.9892
Pseudo second order kinetics4.32753.2457-0.98920.2719
Table 1  Fitting data of adsorption kinetics of methylene blue on porphyrin/MXene based composite films
Fig.7  Adsorption dynamics fitting curve and expression
Fig.8  Methylene blue standard curve (a) and self-degradation diagram (b)
Fig.9  Effect of H2O2 on degradation of photocatalyst (a), photocatalytic degradation rates of methylene blue by different materials (b), photocatalytic degradation properties of methylene blue by different materials (c) and degradation rates (d) of the ZnOEP/MXene films for methylene blue in the presence of different free radical trapping agents
Fig.10  Mechanism of the photocatalytic degradation of methylene blue by the ZnOEP/MXene films
Fig.11  Cyclic service life of the ZnOEP/MXene films
1 Afkhami A, Saber-Tehrani M, Bagheri H. Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution [J]. Desalination, 2010, 263(1-3): 240
2 Wang Z H, Wu Z K, Zhi X J, et al. TiO2/CTS/ATP adsorbent modification and its application in adsorption-ultrafiltration process for dye wastewater purification [J]. Environ. Sci. Pollut. Res., 2021, 28(42): 59963
3 Khataee A, Karimi A, Arefi-Oskoui S, et al. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17 [J]. Ultrason. Sonochem., 2015, 22: 371
4 Liu Z H, Yue Y C, Qiu Y F, et al. Preparation of g-C3N4/Ag/BiOBr composite and photocatalytic reduction of nitrate [J]. Chin. J. Mater. Res., 2023, 37(10): 781
刘志华, 岳远超, 丘一帆 等. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮 [J]. 材料研究学报, 2023, 37(10): 781
5 Chen Y F, Qiu G, Xie S D. Application of TiO2/graphene photocatalysis technology in pollution control of Fengjiang River [J]. Environ. Prot. Technol., 2023, 29(3): 1
陈宜菲, 邱 罡, 谢树德. TiO2/石墨烯光催化技术在枫江污染治理中的应用研究 [J]. 环保科技, 2023, 29(3): 1
6 Hou J, Yang P Z, Zheng Q H, et al. Preparation and performance of Graphite/TiO2 composite photocatalyst [J]. Chin. J. Mater. Res., 2021, 35(9): 703
侯 静, 杨培志, 郑勤红 等. 石墨/TiO2复合光催化剂的制备和性能 [J]. 材料研究学报, 2021, 35(9): 703
7 Ge R Y, Li X Q, Kang S Z, et al. Highly efficient graphene oxide/porphyrin photocatalysts for hydrogen evolution and the interfacial electron transfer [J]. Appl. Catal., 2016, 187B: 67
8 Wang J M, Zheng Y, Peng T Y, et al. Asymmetric Zinc Porphyrin derivative-Sensitized graphitic carbon nitride for efficient visible-light-driven H2 production [J]. ACS Sustain. Chem. Eng., 2017, 5(9): 7549
9 Zhu K, Zhang M Q, Feng X Y, et al. A novel copper-bridged graphitic carbon nitride/porphyrin nanocomposite with dramatically enhanced photocatalytic hydrogen generation [J]. Appl. Catal., 2020, 268B: 118434
10 Da Silva E S, Moura N M M, Neves M G P M S, et al. Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production [J]. Appl. Catal., 2018, 221B: 56
11 Wang L, Fan H Y, Bai F. Porphyrin-based photocatalysts for hydrogen production [J]. MRS Bull., 2020, 45(1): 49
12 Li Z, Jing Z Q, Xia C G. Review on application of metalloporphyrins in catalytic oxidation reactions [J]. Chin. J. Org. Chem., 2007, 27(1): 34
李 臻, 景震强, 夏春谷. 金属卟啉配合物的催化氧化应用研究进展 [J]. 有机化学, 2007, 27(1): 34
13 Sprick R S, Jiang J X, Bonillo B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution [J]. J. Am. Chem. Soc., 2015, 137(9): 3265
14 Germain J, Fréchet J M J, Svec F. Nanoporous polymers for hydrogen storage [J]. Small, 2009, 5(10): 1098
15 Zhang Y G, Riduan S N. Functional porous organic polymers for heterogeneous catalysis [J]. Chem. Soc. Rev., 2012, 41(6): 2083
16 Kaur P, Hupp J T, Nguyen S B T. Porous organic polymers in catalysis: opportunities and challenges [J]. ACS Catal., 2011, 1(7): 819
17 Li Y J, Wang L M, Gao Y, et al. Porous metalloporphyrinic nanospheres constructed from metal 5,10,15,20-tetraksi (4′-ethynylphenyl) porphyrin for efficient catalytic degradation of organic dyes [J]. RSC Adv., 2018, 8(14): 7330
18 Shah N, Wang X Y, Tian J. Recent advances in MXenes: a promising 2D material for photocatalysis [J]. Mater. Chem. Front., 2023, 7(19): 4184
19 Nan J X, Guo X, Xiao J, et al. Nanoengineering of 2D MXene-based materials for energy storage applications [J]. Small, 2021, 17(9): 1902085
20 Wu Z T, Shang T X, Deng Y Q, et al. The assembly of MXenes from 2D to 3D [J]. Adv. Sci., 2020, 7(7): 1903077
21 Tang J Y, Huang X, Qiu T F, et al. Interlayer space engineering of MXenes for electrochemical energy storage applications [J]. Chem. Eur. J., 2021, 27(6): 1921
22 Li Z J, Dai J, Li Y R, et al. Intercalation-deintercalation design in MXenes for high-performance supercapacitors [J]. Nano Res., 2022, 15: 3213
23 Yang K, Luo M, Zhang D T, et al. Ti3C2T x /carbon nanotube/porous carbon film for flexible supercapacitor [J]. Chem. Eng. J., 2022, 427: 132002
24 Lian S H, Li G H, Song F, et al. Surfactant-free self-assembled MXene/carbon nanotubes hybrids for high-rate sodium- and potassium-ion storage [J]. J. Alloys Compd., 2022, 901: 163426
25 Wang R C, Luo S H, Xiao C, et al. MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance [J]. Electrochim. Acta, 2021, 386: 138420
26 Zhou Z H, Liu J Z, Zhang X X, et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding [J]. Adv. Mater. Interfaces, 2019, 6(6): 1802040
27 Deng Y Q, Shang T X, Wu Z T, et al. Fast gelation of Ti3C2T x MXene initiated by metal ions [J]. Adv. Mater., 2019, 31(43): 1902432
28 Fan Q, Zhao R Z, Yi M J, et al. Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications [J]. Chem. Eng. J., 2022, 428: 131107
29 Li T, Ding B, Wang J, et al. Sandwich-structured ordered mesoporous polydopamine/MXene hybrids as high-performance anodes for lithium-ion batteries [J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 14993
30 Liu H, Zhang X, Zhu Y F, et al. Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2T x MXene hybrids as anode for lithium-ion batteries [J]. Nano-Micro Lett., 2019, 11: 65
31 Liu Y T, Zhang P, Sun N, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage [J]. Adv. Mater., 2018, 30(23): 1707334
32 Mao X Q, Zou Y J, Xu F, et al. Three-dimensional self-supporting Ti3C2 with MoS2 and Cu2O nanocrystals for high-performance flexible supercapacitors [J]. ACS Appl. Mater. Interfaces, 2021, 13(19): 22664
33 Zhang T Z, Wang R, Xiao J P, et al. CoS nanowires grown on Ti3C2T x are promising electrodes for supercapacitors: high capacitance and remarkable cycle capability [J]. J. Colloid Interface Sci., 2021, 602: 123
34 Li J F, Han L, Li Y Q, et al. MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries [J]. Chem. Eng. J., 2020, 380: 122590
35 Li C Y, Zhang D D, Cao J, et al. Ni3S2 nanoparticles anchored on d-Ti3C2 nanosheets with enhanced sodium storage [J]. ACS Appl. Energy Mater., 2021, 4(3): 2593
36 Wang H Q, Zhao Y X, Gou L, et al. Rational construction of densely packed Si/MXene composite microspheres enables favorable sodium storage [J]. Rare Met., 2022, 41(5): 1626
37 Zhu X D, Xie Y, Liu Y T. Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions [J]. J. Mater. Chem., 2018, 6A(43): 21255
38 Guo X, Zhang W X, Zhang J Q, et al. Boosting sodium storage in two-dimensional phosphorene/Ti3C2T x MXene nanoarchitectures with stable fluorinated interphase [J]. ACS Nano, 2020, 14(3): 3651
[1] SUN Yuwei, CHEN Chou, QI Xin, REN Chuqi, TANG Qian, TENG Honghui, REN Baixiang. Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI)[J]. 材料研究学报, 2023, 37(11): 871-880.
[2] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[3] QUE Aizhen, ZHU Taoyu, ZHENG Yuying. Preparation of Hollow Magnetic Graphene Oxide and Its Adsorption Performance for Methylene Blue[J]. 材料研究学报, 2021, 35(7): 517-525.
[4] MU Zhaoyu, CAI Wenjie, CHEN Yue, PAN Jie, CHEN Yang. Preparation and Photocatalytic Activity of Meso-silica/ceria Binary Composites with a Core/shell Structure[J]. 材料研究学报, 2021, 35(5): 364-370.
[5] PENG Zitong, GAO Yanrong, YAO Chu, YAO Junlong, ZHU Wenwen, XU Wen, JIANG Xueliang. Preparation and Photocatalytic Activity of Fe/Yb Co-doped Titanium Dioxide Hollow Sphere[J]. 材料研究学报, 2021, 35(2): 135-142.
[6] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[7] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
[8] WANG Shiqi,HUO Wenyi,XU Zhengchao,ZHANG Xuhai,ZHOU Xuefeng,FANG Feng. Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance[J]. 材料研究学报, 2020, 34(3): 176-182.
[9] QIN Yanli,YANG Yan,ZHAO Pengyu,LIU Zhenyu,NI Dingrui. Microstructures and Photocatalytic Properties of BiOCl-RGO Nanocomposites Prepared by Two-step Hydrothermal Method[J]. 材料研究学报, 2020, 34(2): 92-100.
[10] LI Hui, PAN Jie, CAO Kaiyuan, LIU Hui, YIN Jie, WANG Yifeng. Preparation of Nano Zinc Oxide/Sodium Alginate Composite Film by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 829-834.
[11] ZHU Xiaodong, WANG Juan, MA Yang, LUO Jianjun, YU Lin, FENG Wei. Influence of Heat Treatment on Photocatalytic Activity of Ag-ZnO Heterostructure[J]. 材料研究学报, 2020, 34(10): 770-776.
[12] Shuang PAN,Xue ZHUANG,Bing WANG,Lidan TANG,Liang LIU,Jingang QI. Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials[J]. 材料研究学报, 2019, 33(7): 530-536.
[13] Shunsheng CHEN,Shaozhen LI,Xiaojing LUO,Guohong WANG. Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn2S4 Composite Catalysts[J]. 材料研究学报, 2019, 33(2): 145-154.
[14] Zhumei WANG, Xiaoling ZHU, Yueming LI, Runhua LIAO, Zongyang SHEN, Jianlin ZUO. Effect of B and Ru Co-modification on Structure and Photocatalytic Activity of TiO2 Nanotubes[J]. 材料研究学报, 2018, 32(9): 655-661.
[15] Xiangming FANG, Zhi ZENG, Shiyong GAO, Wenqiang LI, Jinzhong WANG. Low-temperature Preparation and Photocatalytic Activity of Eco-friendly Nanocone Forest-like Arrays of ZnO[J]. 材料研究学报, 2018, 32(12): 945-950.
No Suggested Reading articles found!