Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (3): 217-224    DOI: 10.11901/1005.3093.2024.204
ARTICLES Current Issue | Archive | Adv Search |
Effect of Fe- and Cu-content on Microstructure and Mechanical Properties of TC10 Ti-alloy Bars
HU Ming1, ZHANG Xinquan2, LI Weiqiang3, YANG Xiaokang4, HUANG Jinhu5, LEI Xiaofei1, QIU Jianke1, DONG Limin1()
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.China Aviation Industry Corporation Xi'an Aircraft Design and Research Institute, Xi'an 710089, China
3.Beijing Hangwei High Tech Connection Technology Co. Ltd., Beijing 102600, China
4.Xi'an Saitesimai Titanium Industry Co. Ltd., Xi'an 710016, China
5.Aerospace Precision Industry Co. Ltd., Tianjin 300300, China
Cite this article: 

HU Ming, ZHANG Xinquan, LI Weiqiang, YANG Xiaokang, HUANG Jinhu, LEI Xiaofei, QIU Jianke, DONG Limin. Effect of Fe- and Cu-content on Microstructure and Mechanical Properties of TC10 Ti-alloy Bars. Chinese Journal of Materials Research, 2025, 39(3): 217-224.

Download:  HTML  PDF(3832KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of Fe- and Cu-content on the microstructure and mechanical properties of TC10 alloy bars was investigated by means of scanning electron microscopy, EDS analysis of transmission electron microscopy, and mechanical testing machine. The results indicate that for the as rolled and annealed TC10 Ti-alloys, with the increasing Fe- and Cu-content, their yield strength and tensile strength increase, while the changes in elongation and cross-sectional shrinkage at break are not significant. For the solid solution aged TC10 alloy, Ti is evenly distributed in both βt and αp phases, Al is less distributed at grain boundaries, while V, Fe, and Cu elements are more abundant at the grain boundaries in βt phase. For TC10 alloys with the same Fe- and Cu-content, with the increasing solid solution temperature, their yield strength and tensile strength increase, while the elongation and cross-sectional shrinkage decrease. For TC10 alloys subjected to solid solution treatment at the same temperature, with the increase of Fe and Cu content, their yield strength and tensile strength increase, while the elongation and cross-sectional shrinkage at break decrease. The higher the solid solution temperature, the more significant the influence of alloying elements Fe and Cu on the strength and plasticity of the alloy. Being subjected to solid solution treatment at 900 oC, the alloy with 0.65% Fe and 0.65% Cu can achieve superior comprehensive mechanical properties, with yield strength, tensile strength, elongation, and cross-sectional shrinkage at break of 1392 ± 3 MPa, 1435.5 ± 0.5 MPa, (8 ± 1)% and (21.5 ± 1.5)%, respectively.

Key words:  metal materials      titanium alloys      heat treatment      mechanical properties      microstructure     
Received:  13 May 2024     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program Youth Scientist Project of China(2022YFB3708300);Youth Innovation Promotion Association of Chinese Academy of Sciences(2022188)
Corresponding Authors:  DONG Limin, Tel: (024)23971962, E-mail: lmdong@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.204     OR     https://www.cjmr.org/EN/Y2025/V39/I3/217

ElementsAlVSnFeCuTi
1#5.95.82.20.40.4Bal.
2#5.95.82.20.650.65Bal.
3#5.95.82.20.90.9Bal.
Table 1  Main chemical composition of TC10 alloy (mass fraction, %)
Fig.1  SEM images of rolled state TC10 alloy with different Fe and Cu content (a) 1# cross direction; (b) 1# longitudinal direction; (c) 2# cross direction; (d) 2# longitudinal direction; (e) 3# cross direction; (f) 3# longitudinal direction
Fig.2  Room temperature mechanical properties of rolled state TC10 alloy with different Fe and Cu content
Fig.3  Microstructure of annealed state 2# TC10 alloy and corresponding element concentration distributions (a) TEM image; (b) Ti; (c) Al; (d) V; (e) Fe; (f) Cu;
Fig.4  SEM images of annealed state TC10 alloy with different Fe and Cu content (a) 1# cross direction; (b) 1# longitudinal direction; (c) 2# cross direction; (d) 2# longitudinal direction; (e) 3# cross direction; (f) 3# longitudinal direction
Fig.5  Room temperature mechanical properties of annealed state TC10 alloy with different Fe and Cu content
Fig.6  Microstructure of solution and aged state (900 oC/1 h/WQ + 540 oC/4 h/AC) 2# TC10 alloy and corresponding element concentration distributions (a) TEM image; (b) Ti; (c) Al; (d) V; (e) Cu; (f) Fe
Fig.7  SEM images of solution and aged state (900 oC/1 h/WQ + 540 ℃/4 h/AC) TC10 alloy with different Fe and Cu content (a) 1# cross direction; (b) 1# longitudinal direction; (c) 2# cross direction; (d) 2# longitudinal direction; (e) 3# cross direction; (f) 3# longitudinal direction
Fig.8  Room temperature mechanical properties of solution and aged state TC10 alloy with different Fe and Cu content (a) strength; (b) plasticity
1 Leyens C, Peters M, translated by Chen Z H, Yan H G, Chen J H, et al. Titanium and Titanium Alloy [M]. Beijing: Chemical Industry Press, 2005
莱茵斯 C, 皮特尔斯 M著, 陈振华, 严红革, 陈吉华等译. 钛与钛合金 [M]. 北京: 化学工业出版社, 2005
2 Zhao Y Q, Chen Y N, Zhang X M, et al. Phase Transformation and Heat Treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012
赵永庆, 陈永楠, 张学敏 等. 钛合金相变及热处理 [M]. 长沙: 中南大学出版社, 2012
3 Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloys and Their Applications [M]. Beijing: Chemical Industry Press, 2005
张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005
4 Zhang B Z, Sun J Q. Recent applications of titanium alloys in typical commercial aircraft fuselage structure [J]. Adv. Aeronaut. Sci. Eng., 2014, 5(3): 275
张宝柱, 孙洁琼. 钛合金在典型民用飞机机体结构上的应用现状 [J]. 航空工程进展, 2014, 5(3): 275
5 Zhang L J, Wang X Y, Guo Q Y, et al. Application of titanium alloy in Chinese aircraft fastener [J]. Aeronaut. Manuf. Technol., 2013, (16): 129
张利军, 王幸运, 郭启义 等. 钛合金材料在我国航空紧固件中的应用 [J]. 航空制造技术, 2013, (16): 129
6 Dong R F, Li J S, Tang B, et al. Research development of titanium for fastener application in aerospace [J]. Aeronaut. Manuf. Technol., 2018, 61(4): 86
董瑞峰, 李金山, 唐 斌 等. 航空紧固件用钛合金材料发展现状 [J]. 航空制造技术, 2018, 61(4): 86
7 Qin G H, Yan B, Ji B, et al. Investigation on thermal deformation performance and microstructure transition of TC10 titanium alloy [J]. Titanium Ind. Prog., 2015, 32(6): 19
秦桂红, 严 彪, 计 波 等. TC10钛合金高温变形行为和组织演变的研究 [J]. 钛工业进展, 2015, 32(6): 19
8 Zhu B H, Zeng W D, Chen L, et al. Microstructure and mechanical properties of Ti-6Al-6V-2Sn alloy bars processed by high temperature thermomechanical treatment [J]. Chin. J. Rare Met., 2018, 42(11): 1143
朱宝辉, 曾卫东, 陈 林 等. 高温形变热处理制备Ti-6Al-6V-2Sn合金棒材的组织及性能 [J]. 稀有金属, 2018, 42(11): 1143
9 Zhang M Y, Yun X B, Fu H W. Effect of different heat treatment processes on microstructure and properties of TC10 titanium alloy [J]. J. Plast. Eng., 2021, 28(12): 237
张明玉, 运新兵, 伏洪旺. 不同热处理工艺对TC10钛合金组织及性能的影响 [J]. 塑性工程学报, 2021, 28(12): 237
doi: 10.3969/j.issn.1007-2012.2021.12.030
10 Zhang M Y, Yun X B, Fu H W. Effect of BASCA heat treatment on microstructure and fracture toughness of TC10 titanium alloy [J]. Mater. Rep., 2024, 38(7): 22080020
张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响 [J]. 材料导报, 2024, 38(7): 22080020
11 Barriobero-Vila P, Requena G, Buslaps T, et al. Role of element partitioning on the α-β phase transformation kinetics of a bi-modal Ti-6Al-6V-2Sn alloy during continuous heating [J]. J. Alloys Compd., 2015, 626: 330
12 Barriobero-Vila P, Oliveira V B, Schwarz S, et al. Tracking the αʺ martensite decomposition during continuous heating of a Ti-6Al-6V-2Sn alloy [J]. Acta Mater., 2017, 135: 132
13 Chen G C, Yang W J, Chen S, et al. Effects of forging technics on performance of TC10 titanium alloy stick [J]. Chin. J. Nonferrous Met., 2010, 20(suppl.1) : 25
陈国财, 杨文甲, 陈 苏 等. 锻造工艺对TC10钛合金棒材性能的影响 [J]. 中国有色金属学报, 2010, 20(): 25
14 Zhang Z, Li W, Liao Q, et al. Effect of forging process on microstructure and mechanical properties of TC10 titanium alloy [J]. Mech. Eng. Autom., 2014, (3): 108
张 智, 李 维, 廖 强 等. 不同锻造工艺对TC10钛合金组织和性能的影响 [J]. 机械工程与自动化, 2014, (3): 108
15 Qin G H, Yan B, Ji B, et al. Effect of deformation and aging on microstructures and mechanical properties of TC10 titanium alloy [J]. Titanium Ind. Prog., 2018, 35(2): 39
秦桂红, 严 彪, 计 波 等. 锻造工艺和时效处理对TC10钛合金组织和性能的影响 [J]. 钛工业进展, 2018, 35(2): 39
16 Qi Y L, Du Y, Liu W, et al. Effect of heat treatment on microstructure and properties of TC10 titanium alloys [J]. Titanium Ind. Prog., 2011, 28(5): 31
戚运莲, 杜 宇, 刘 伟 等. 热处理温度对TC10钛合金棒材组织与性能的影响 [J]. 钛工业进展, 2011, 28(5): 31
17 Chen R B, Zhu B H, Zhao H Z, et al. Heat treatment process of Ti-662 titanium alloy [J]. Heat Treat. Met., 2013, 38(3): 97
陈睿博, 朱宝辉, 赵洪章 等. Ti-662钛合金热处理工艺 [J]. 金属热处理, 2013, 38(3): 97
18 Zhu B H, Zeng W D, Chen L, et al. Influences of solution and aging treatment process on microstructure and mechanical properties of Ti-6Al-6V-2Sn titanium alloy rods [J]. Chin. J. Nonferrous Met., 2018, 28(4): 677
朱宝辉, 曾卫东, 陈 林 等. 固溶时效工艺对Ti-6Al-6V-2Sn钛合金棒材组织及性能的影响 [J]. 中国有色金属学报, 2018, 28(4): 677
[1] . Effect of welding heat source mode on microstructure and properties of 5083-H111 aluminum alloy joint[J]. 材料研究学报, 2025, (4): 0-0.
[2] . Preparation and Performance research of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, (4): 0-0.
[3] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[4] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[5] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[6] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[7] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[8] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[9] WANG Na, LI Wenbin, PANG Jianchao, CHEN Lijia, GAO Chong, ZOU Chenglu, ZHANG Hui, LI Shouxin, ZHANG Zhefeng. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures[J]. 材料研究学报, 2025, 39(1): 1-10.
[10] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[11] CUI Jie, LI Xudong, DU Xian, LI Shubo, DU Wenbo. Effect of Rolling Temperature on Microstructure Evolution and Mechanical/Thermal Properties of Mg-4Zn-1Mn-1.2Ce Alloy Sheet[J]. 材料研究学报, 2024, 38(9): 641-650.
[12] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[13] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[14] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[15] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
No Suggested Reading articles found!