Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (2): 137-144    DOI: 10.11901/1005.3093.2023.606
ARTICLES Current Issue | Archive | Adv Search |
Effect of Nickel-cobalt Ion Ratio on Ferrite Wave-absorbing Properties
WANG Guangming1, MA Zhijun1,2(), ZHENG Yunsheng1, CHENG Liang1, HANG Wenwu1
1 College of Mining, Liaoning Technical University, Fuxin 123000, China
2 College of Materials Science & Engineering, Liaoning Technical University, Fuxin 123000, China
Cite this article: 

WANG Guangming, MA Zhijun, ZHENG Yunsheng, CHENG Liang, HANG Wenwu. Effect of Nickel-cobalt Ion Ratio on Ferrite Wave-absorbing Properties. Chinese Journal of Materials Research, 2025, 39(2): 137-144.

Download:  HTML  PDF(7963KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Spinel ferrite Ni x Co1 - x Fe2O4 was prepared by sol-gel method, and the effect of different ion ratios Ni2+∶Co2+ on its structure and wave-absorbing properties were studied by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and vector network analyzer (VNA). Focus on its following features: crystallographic structure, particle size, micromorphology, electromagnetic loss and wave-absorbing performance. The results showed that the average particle size of ferrite wave-absorbers prepared with a molar ratio of citric acid to metal ions of 1∶1 by pH = 7 and followed by being crystalized 950 oC for 3 h, is 66.00~70.00 nm. When Ni2+∶Co2+ = 5∶5, Ni0.5Co0.5Fe2O4 has the best wave-absorbing performancewith the minimum reflection loss value is -16.15 dB at the absorption layer thickness of 3.00 mm and the frequency is 17.32 GHz, and the effective frequency band width is 2.21 GHz (15.79~18.00 GHz), which is in the Ku band, and the excellent wave-absorbing performance of Ni0.5Co0.5Fe2O4 is attributed to the combined effect of exchange resonance and eddy current loss.

Key words:  sol-gel method      spinel      nickel-cobalt ferrite      ion ratio      wave-absorbing properties     
Received:  25 December 2023     
ZTFLH:  TM277  
Fund: National Natural Science Foundation of China(52274265)
Corresponding Authors:  MA Zhijun, Tel: 13941881359, E-mail: zhijunma0930@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.606     OR     https://www.cjmr.org/EN/Y2025/V39/I2/137

Fig.1  XRD plot of different doping ratios of Ni2+, Co2+
Structural formula / (°)d / nmɑ / nm(311) Priority crystallization diffraction peak
FWHM / (°)D / nm
Ni0.1Co0.9Fe2O435.570.25210.83610.0021666.7
Ni0.3Co0.7Fe2O435.640.25170.83480.0020669.9
Ni0.5Co0.5Fe2O435.670.25150.83410.0021367.6
Ni0.7Co0.3Fe2O435.770.25080.83180.0020668.1
Ni0.9Co0.1Fe2O435.780.25070.83150.0020869.3
Table 1  Structural parameters of nickel-cobalt ferrite
Fig.2  TEM plot of different doping ratios of Ni2+ and Co2+(a) Ni0.1Co0.9Fe2O4, (b) Ni0.3Co0.7Fe2O4, (c) Ni0.5Co0.5Fe2O4, (d)Ni0.7Co0.3Fe2O4, (e) Ni0.9Co0.1Fe2O4
Fig.3  Curve of reflection loss and frequency and thickness of Ni x Co1 - x Fe2O4 samples with different doping ratios
(a) Ni0.1Co0.9Fe2O4, (b) Ni0.3Co0.7Fe2O4, (c) Ni0.5Co0.5Fe2O4, (d) Ni0.7Co0.3Fe2O4, (e) Ni0.9Co0.1Fe2O4
Structural formulaNi0.5Co0.5Fe2O4NiFe2O4CoFe2O4
D / nm67.656.036.0
Table 2  Grain size of nickel-cobalt ferrite, nickel-ferrite and cobalt ferrite
Structural formulaMin. reflection loss / dBFrequency / GHzBandwidth / GHz (≤ -10 dB)
Ni0.5Co0.5Fe2O4-16.1517.322.21(15.79~18.00)
NiFe2O4-16.586.201.40(5.00~6.40)
CoFe2O4-15.626.201.00(5.40~6.40)
Table 3  Wave-absorbing properties parameters for nickel-cobalt ferrite, nickel-ferrite and cobalt ferrite
Preparation methodStructural formulaMin. reflection loss / dBFrequency / GHzBandwidth / GHz (≤ -5 dB)
Sol-gel methodNiFe2O4-16.586.203.80
Ni0.5Co0.5Fe2O4-16.1517.323.65
CoFe2O4-15.626.203.80
Solvothermal methodNiFe2O4-9.106.001.37
Ni0.5Co0.5Fe2O4-14.003.451.70
CoFe2O4-16.901.661.44
Table 4  Wave-absorbing properties parameters of nickel-cobalt ferrite, nickel-ferrite and cobalt ferrite under different preparation methods
Fig.4  Curve of the Ni x Co1 - x Fe2O4 sample tanδe (a), tanδm (b) and frequency
Fig.5  Curve of the Ni x Co1 - x Fe2O4 sample tanδ (a), C0 (b) and frequency
Fig. 6  Curve of the Ni x Co1 - x Fe2O4 sample attenuation constant and frequency
Fig.7  Impedance matching, reflection loss and frequency curves of Ni0.5Co0.5Fe2O4 samples
1 Zhang J W, Meng X, Wei X F, et al. An optical sensor with wide measurement range for the magnetic field detection [J]. Sens Actuators, 2023, 363A: 114757
2 Zhu B S, Mu W P, Gao Y F, et al. A sustainable and low-cost route to design FeNi alloy/carbon-decorated coal fly ash with enhanced microwave absorption [J]. Surf. Interfaces, 2023, 42: 103354
3 Ahmad H, Tariq A, Shehzad A, et al. Stealth technology: methods and composite materials—a review [J]. Polym. Compos., 2019, 40(12): 4457
4 Song J L, Gao Y, Tan G G, et al. Comparative study of microwave absorption properties of Ni–Zn ferrites obtained from different synthesis technologies [J]. Ceram. Int., 2022, 48(16): 22896
5 Ha J H, Lee S, Park B, et al. Feasibility of as-prepared reticulated porous barium titanate without additional radar-absorbing material coating in potential military applications [J]. J. Aust. Ceram. Soc., 2020, 56(4): 1481
6 Min D D, Jiang J L, Qing Y C, et al. Attapulgite coated polycrystalline iron fibers composites with light weight feature and enhanced microwave absorption properties [J]. J. Alloy. Compd., 2023, 948: 169817
7 He E Y, Yan T M, Ye X C, et al. Preparation of FeSiAl–Fe3O4 reinforced graphene/polylactic acid composites and their microwave absorption properties [J]. J. Mater. Sci., 2023, 58(28): 11647
8 Raju V S R. EM wave absorption of NiCuCoZn ferrites for use in ultra-high-frequency applications [J]. J. Mater. Sci.: Mater. Electron., 2022, 33(16): 13198
9 Sadrolhosseini A R, Naseri M. Investigation of corrosiveness biodiesel blends using polypyrrole chitosan-cobalt/ferrite nanocomposite [J]. Prot. Met. Phys. Chem. Surf., 2019, 55(1): 72
10 Bamburov A D, Markov A A, Leonidov I A, et al. The impact of Ba substitution on high-temperature transport in lanthanum-strontium ferrite [J]. J. Solid State Electrochem., 2018, 22(3): 899
11 Xu L J, Li Z, Xiao F N, et al. Properties and microstructure of oxide dispersion strengthened tungsten alloy prepared by liquid-phase method: a review [J]. Tungsten, 2023, 5(4): 481
12 Tan S H, Yan G Q, Yu D Y. Research progress of hydrothermal preparation and properties for spinel ferrite/titanium dioxide composites [J]. Micronanoelectron. Technol., 2021, 58(1): 30
谈尚华, 闫共芹, 余冬燕. 尖晶石型铁氧体/TiO2复合材料的水热法制备及性能研究进展 [J]. 微纳电子技术, 2021, 58(1): 30
13 Yun Y H, Liu Y L, Zhang W. Study on microwave absorption properties of nanometer Ni0.5Zn0.5-Ce x Fe2 - x O4 ferrite by chemistry co-precipitation method [J]. J. Mater. Eng., 2008, (3): 58
云月厚, 刘永林, 张 伟. 化学共沉淀法制备的纳米Ni0.5Zn0.5Ce x -Fe2 - x O4铁氧体微波吸收特性研究 [J]. 材料工程, 2008, (3): 58
14 Li W, Zhang Z L, Lv Y Y, et al. Ultralight coral-like hierarchical Fe/CNTs/Porous carbon composite derived from biomass with tunable microwave absorption performance [J]. Appl. Surf. Sci., 2022, 571: 151349
15 Lin W H, Wang Z J. Fabrication of core-shell NiFe2O4@C@PPy composite microspheres with efficient microwave absorption properties [J]. Mater. Lett., 2023, 352: 135212
16 Zhang Y Q, Qiu Q, Zhang X. Preparation and microwave absorbing property of cobalt and nickel ferrite nanopowders [J]. J. Magn. Mater. Devices, 2009, 40(5): 30
张晏清, 邱 琴, 张 雄. 纳米钴、镍铁氧体的制备与吸波性能 [J]. 磁性材料及器件, 2009, 40(5): 30
17 Banaj L, Agrawal S. Dielectric behavior of Zr4+ doped MgFe2O4 spinel ferrite synthesized by solid-state reaction method [J]. Curr. Appl. Phys., 2023, 56: 47
18 Gao J, Ma Z J, Liu F L, et al. Synthesis and electromagnetic wave absorption properties of Gd-Co ferrite@carbon core-shell structure composites [J]. Rare Met., 2023, 42(1): 254
19 Tang C, Yang J Y, Deng W B, et al. Design of ultralight and stable Ti3C2T x /SiCnw hybrid aerogel with hierarchical structure and heterogeneous interface for electromagnetic wave absorption [J]. Carbon, 2024, 218: 118697
20 Ma Z J, Mang C Y, Wang J C, et al. Influence of doping with metal ions Co2+, Mn2+ and Cu2+ on absorbability of nano Ni-Zn ferrite [J]. Chin. J. Mater. Res., 2017, 31(12): 909
马志军, 莽昌烨, 王俊策 等. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响 [J]. 材料研究学报, 2017, 31(12): 909
doi: 10.11901/1005.3093.2017.403
21 Duan H Z, Chen G H, Zhou F L, et al. Preparation and properties of nickel substituted cobalt ferrite hollow microspheres [J]. Chin. J. Inorg. Chem., 2015, 31(11): 2181
段红珍, 陈国红, 周芳灵 等. 纳米镍钴铁氧体空心微球的制备与性能 [J]. 无机化学学报, 2015, 31(11): 2181
22 Trinadh B, Suresh J, Patta G R, et al. Structural, optical, electrical and magnetic properties of aluminum substituted Co-Cu-Zn nano-crystalline ferrites [J]. Solid State Commun., 2023, 376: 115360
23 Guo W Q, Hong B, Xu J C, et al. CNTs-improved electromagnetic wave absorption performance of Sr-doped Fe3O4/CNTs nanocomposites and physical mechanism [J]. Diam. Relat. Mater., 2024, 141: 110699
24 Tian F, Gao Y, Wang A P, et al. Effect of Mn substitution on structural, magnetic and microwave absorption properties of Co2Y hexagonal ferrite [J]. J. Magn. Magn. Mater., 2023, 587: 171229
25 Wang C, Chen N K, Xiao Y Y, et al. Exceeding natural resonance frequency limit and enhanced microwave absorption performance of Fe3O4 nanorods coated with SiO2 layer [J]. Ceram. Int., 2023, 49(22): 36233
26 Chi S P, Zhu S J, Zhu Y, et al. Preparation and soft magnetic properties of FeNi@Al2O3 composites [J]. J. Supercond. Nov. Magn., 2023, 36: 1703
27 Xie Y X, Guo Y Y, Cheng T T, et al. Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite [J]. Chem. Eng. J., 2023, 457: 141205
28 Li D R, Liang X H, Quan B, et al. Investigating the synergistic impedance match and attenuation effect of Co@C composite through adjusting the permittivity and permeability [J]. Mater. Res. Express, 2017, 4(3): 035604
29 Du H Z, Zhang W M, Wang L, et al. Heterostructured C@Fe3O4@FeSiCr composite absorbing material derived from MIL-88(Fe)@FeSiCr [J]. J. Alloys Compd., 2023, 968: 172129
30 Zhou Y H, Zhuge X, An P, et al. First-principles investigations on MXene-blue phosphorene and MXene-MoS2 transistors [J]. Nanotechnology, 2020, 31(39): 395203
31 Ge Y Q, Li C P, Waterhouse G I N, et al. ZnFe2O4@SiO2@Polypyrrole nanocomposites with efficient electromagnetic wave absorption properties in the K and Ka band regions [J]. Ceram. Int., 2021, 47(2): 1728
[1] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[2] DONG Yuhang, LIU Chunzhong, ZHANG Hongning, LU Tianni, LI Na, HUANG Zhenwei, MA Chiye. Impact of Nitriding on Microstructure and Wave-absorbing Properties of SmFeN Alloy Powders[J]. 材料研究学报, 2024, 38(10): 751-758.
[3] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[4] WU Mengjiao, REN Zhaohui, TIAN He, HAN Gaorong. Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control[J]. 材料研究学报, 2020, 34(9): 650-658.
[5] LI Guanglong, LI Jingnian, LI Wenbin, YAN Ling, ZHANG Peng, WANG Xiaohang. Microstructure and Properties of Longitudinally Profiled EH40 Steel Plate[J]. 材料研究学报, 2020, 34(4): 247-253.
[6] ZHU Xiaodong, WANG Juan, MA Yang, LUO Jianjun, YU Lin, FENG Wei. Influence of Heat Treatment on Photocatalytic Activity of Ag-ZnO Heterostructure[J]. 材料研究学报, 2020, 34(10): 770-776.
[7] Hongxia JING, Mingxing GAO, Xingmei WANG, Wangjun PEI, Weizhou JIAO. Preparation and Properties of Ce-doped Cobalt Ferrite[J]. 材料研究学报, 2018, 32(6): 449-454.
[8] Yanhui WANG, Shujiang CHEN, Guohua LI, Lin TIAN, Lijie SUN. Synthesis of Mg-Fe-Al Composite Spinel by Carbon Thermal Reduction Method[J]. 材料研究学报, 2018, 32(5): 365-370.
[9] Lin LI, Dongxu LI, Shupeng ZHANG, Liguo WANG. Preparation and Properties of Fatty Acid/SiO2 Composite Phase Change Materials[J]. 材料研究学报, 2017, 31(8): 591-596.
[10] Yanwei LI, Zhiping XIE, Canzheng LIU, Jinhuan YAO, Jiqiong JIANG, Jianwen YANG. Preparation and Lithium Storage Performance of Two Dimensional Fold-like V2O5 Nanomaterial[J]. 材料研究学报, 2017, 31(5): 374-380.
[11] Zhengyuan GAO,Xianlong CAO,Lang LIU,Yiliu FANG,Linsheng HU. Properties of Organic/Inorganic Hybrid Coatings Formed on Magnesium Alloy Surface[J]. 材料研究学报, 2017, 31(3): 211-218.
[12] CUI Yi, WEI Hengyong, WANG Heyang, WEI Yingna, LIN Jian, BU Jinglong, WANG Peng. Effect of Spinning Solution Parameters on Synthesis of Magnesium Aluminate Spinel Fibers via Electrospinning[J]. 材料研究学报, 2016, 30(2): 115-122.
[13] CHEN Yiwei ZHANG Ying WANG Dayun HAN Enshan. Synthesis and Electrochemical Performance of Mn4+ Doped Lithium Vanadium Oxide[J]. 材料研究学报, 2011, 25(2): 205-208.
[14] GUO Na LI Yadong. Effect of Sm3+ Doping on the Properties of Thermoceramics SmxNiCo0.2Mn1.8O4[J]. 材料研究学报, 2011, 25(2): 209-213.
[15] ZHANG Jiancheng; ZHOU Yue; SHEN Jiaqi (Dep.of Inorg.Mater.; Shanghai University; Shanghai 201800). FACTORS OF AFFECTING SnO_2 FILMS PREPARED BY SOL-GEL METHOD AND THEIR CHARACTERISTICS[J]. 材料研究学报, 1998, 12(3): 239-244.
No Suggested Reading articles found!