Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (9): 650-658    DOI: 10.11901/1005.3093.2020.150
ARTICLES Current Issue | Archive | Adv Search |
Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control
WU Mengjiao1, REN Zhaohui1(), TIAN He2, HAN Gaorong1
1. State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2. Center of Electron Microscope, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Cite this article: 

WU Mengjiao, REN Zhaohui, TIAN He, HAN Gaorong. Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control. Chinese Journal of Materials Research, 2020, 34(9): 650-658.

Download:  HTML  PDF(16293KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

PbTiO3 (PTO) ferroelectric thin films were synthesized by a sol-gel process, where different concentration (0.2%, 0.5%, 0.8%, mole ratio) of PbTiO3 nanoplates with large spontaneous polarity were introduced to the sol system to manipulate the growth and microstructures of PbTiO3 films. The products were then characterized by means of X-ray diffractometer(XRD), scanning electron microscope (SEM), transmission electron microscope (TEM). The effect of PTO nanoplates on the growth mechanism of PTO films was investigated by in-situ XRD. It was found that nanoplates dramatically affected the growth process and crystallographic orientation of PbTiO3 films, giving rise to a preferred orientation of (100) in PbTiO3 films. In addition, an effective control of grain size of PbTiO3 films ranging from 100 nm to 2 μm has been realized by altering the concentration of nanoplates. According to results of SEM, TEM and in-situ XRD analysis, the grains in solid-state films exhibited the growth characteristics of orientation related gathering of gains, similar to that in liquid phase. This growth behavior can be attributed to the strong electrostatic force originated from polar surfaces of nanoplates, which induced the adsorption and oriented alignment of small grains, accounting for the orientation and grain size evolution.

Key words:  inorganic non-metallic materials      lead titanate      sol-gel method      ferroelectric polarization      oriented attachment growth     
Received:  03 May 2020     
ZTFLH:  TB34  
Fund: National Natural Science Foundation of China(U1909212);Key R&D Program Projects in Zhejiang Province(2020C01124);Fundamental Research Funds for the Central Universities(2020FZZX002);Fundamental Research Funds for the Central Universities(2020-FZZX003)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.150     OR     https://www.cjmr.org/EN/Y2020/V34/I9/650

Fig.1  SEM image of PTO nanoplates(a),DTA/TGA curves of PTO nanoplates(b) and Cross-sectional ABF-STEM image of PTO nanoplates(c), where Pb (green), Ti (blue) and O (red) atoms have been marked and Unit-cell projection of tetragonal PTO along (010) direction(d), the displacement of Ti and O atoms with respect to the center of the Pb atoms along the c-axis are denoted as δTi and δO
Fig.2  XRD spectra of PTO film synthesized with adding different concentrations of nanoplates (a); Enlarged part of 19~35o in (a) (b) and (100) orientation ratio of PTO films as a function of nanoplates concentration (c)
Fig.3  SEM images of PTO films synthesized by sol-gel method with adding different concentrations of nanoplates (a) 0; (b) 0.2%; (c) 0.5%; (d) 0.8%
Fig.4  Cross-section TEM image of PTO film with 0.5% nanoplates addition (a), Selected area electron diffraction (SAED) patterns of PTO film in (a) (b), Cross-section TEM image of grain boundary area between two grains (c) and High resolution TEM image of the rectangle area in (c) (d)
Fig.5  DTA and TGA curves of PTO precursor gel powder with 0.5% addition of nanoplates
Fig.6  FTIR spectra of PTO precursor gel powder with 0.5% addition of nanoplates after heat treatment in different temperatures
Fig.7  In-situXRD patterns of PTO gel film as a function of temperature (a) Diffraction peaks of (001) and (100); (b) Diffraction peaks of (101) and (110)
Fig.8  SEM image of PTO film areas including nanoplates (a), schematic illustrations of four stages for OA growth (b)~(e) and SEM image of PTO film at the last stage of OA growth (f)
[1] Wang Y L, Zhao H Q, Zhang L X, et al. PbTiO3-based perovskite ferroelectric and multiferroic thin films [J]. Phys. Chem. Chem. Phys., 2017, 19: 17493
doi: 10.1039/c7cp01347g pmid: 28671205
[2] Martin L W, Rappe A M. Thin-film ferroelectric materials and their applications [J]. Nat. Rev. Mater., 2016, 2: 16087
[3] Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: review of materials, properties, and applications [J]. J. Appl. Phys., 2006, 100: 051606
[4] Ramesh R, Schlom D G. Orienting ferroelectric films [J]. Science, 2002, 296(5575): 1975
pmid: 12065821
[5] Mhin S, Nittala K, Cozzan C, et al. Role of the PbTiO3 seed layer on the crystallization behavior of PZT thin films [J]. J. Am. Ceram. Soc., 2015, 98(5): 1407
[6] Wang C C, Zhu J. A discussion on common characteristics of ferroelectricity, high temperature superconductivity and colossal magnetoresistance (CMR) effect [J]. Mater. Rev., 2002, 16(4): 16
(汪春昌, 朱静. 铁电性、高温超导电性和庞磁电阻(CMR)效应的共性特征探讨 [J]. 材料导报, 2002, 16(4): 16)
[7] Börnstein L. Ferroelectrics and Related Substances: Oxides [M]. Berlin: Springer, 1981
[8] Guzmán G, Barboux P, Livage J, et al. Crystallization of textured PbTiO3 deposited from gels [J]. J Sol-Gel Sci Techn, 1994, 2(1): 619
[9] Lu X Y, Chen Z H, Cao Y, et al. Mechanical-force-induced non-local collective ferroelastic switching in epitaxial lead-titanate thin films [J]. Nat. Commun., 2019, 10: 3951
pmid: 31477695
[10] Zhang S R, Zhu Y L, Tang Y L, et al. Giant polarization sustainability in ultrathin ferroelectric films stabilized by charge transfer [J]. Adv. Mater., 2017, 29(46): 1703543
[11] Saremi S, Xu R J, Dedon L R, et al. Enhanced electrical resistivity and properties via ion bombardment of ferroelectric thin films [J]. Adv. Mater., 2016, 28(48): 10750
doi: 10.1002/adma.201603968 pmid: 27723127
[12] Chentir M -T, Utsugi S, Fujisawa T, et al. Small-strain (100)/(001)-oriented epitaxial PbTiO3 films with film thickness ranging from nano- to micrometer order grown on (100)CaF2 substrates by metal organic chemical vapor deposition [J]. J. Mater. Res., 2013, 28(5): 696
[13] Morioka H, Yamada T, Tagantsev A K, et al. Suppressed polar distortion with enhanced Curie temperature in in-plane 90o-domain structure of a-axis oriented PbTiO3 Film [J]. Appl. Phys. Lett., 2015, 106: 042905
[14] Muralt P, Maeder T, Sagalowicz L, et al. Texture control of PbTiO3 and Pb(Zr,Ti)O3 thin films with TiO2 seeding [J]. J. Appl. Phys., 1998, 83(7): 3835
[15] Chi Q G, Li W L, Liu C Q, et al. Effect of TiOx seed layer on the texture and electric properties in La and Ca modified PbTiO3 thin films [J]. Thin Solid Films, 2009, 517(17): 4826
[16] Yang X, Wu X Q, Ren W, et al. Effects of LaNiO3 buffer layers on preferential orientation growth and properties of PbTiO3 thin films [J]. Ceram. Int., 2008, 34(4): 1035
doi: 10.1016/j.ceramint.2007.09.077
[17] Tang H, Zhou Z, Bowland C C, et al. Growth of highly textured PbTiO3 films on conductive substrate under hydrothermal conditions [J]. Nanotechnology, 2015, 26: 345602
pmid: 26243166
[18] Lu C J, Shen H M, Zhu Y P, et al. X-ray diffraction study on the grain-size-dependences of orientation and 90o-domain structure in oriented PbTiO3 thin films on (111) Pt [J]. Mater. Lett., 1997, 31(3): 189
doi: 10.1016/S0167-577X(96)00268-6
[19] Lu C J, Ren S B, Shen H M, et al. The effect of grain size on domain structure in unsupported thin films [J]. J. Phys.: Condens. Matter, 1996, 8(42): 8011
[20] Lu C J, Shen H M, Wang Y N, et al. Grain size effect on the phase transitions in oriented PbTiO3 thin films deposited by the sol-gel method on (111) Pt/Si [J]. Mater. Lett., 1998, 34(1): 5
doi: 10.1016/S0167-577X(97)00128-6
[21] Ren Z H, Wu M J, Chen X, et al. Electrostatic force-driven oxide heteroepitaxy for interface control [J]. Adv. Mater., 2018, 30(38): 1707017
doi: 10.1002/adma.v30.38
[22] Li W, Wang F, Li M, et al. Polarization-dependent epitaxial growth and photocatalytic performance of ferroelectric oxide heterostructures [J]. Nano Energy, 2018, 45: 304
[23] Chao C Y, Ren Z H, Zhu Y H, et al. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates [J]. Angew. Chem. Int. Ed., 2012, 51(37): 9283
[24] Jia C L, Nagarajan V, He J Q, et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films [J]. Nat. Mater., 2007, 6(1): 64
doi: 10.1038/nmat1808 pmid: 17173031
[25] Yin Z W. Dielectric Physics [M]. Beijing: Science Press, 2003
(殷之文. 电介质物理学 第2版 [M]. 北京: 科学出版社, 2003)
[26] Bao D, Yao X, Wakiya N, et al. Structural, dielectric, and ferroelectric properties of PbTiO3 thin films by a simple sol-gel technique [J]. Mat. Sci. Eng B, 2002, 94: 269
[27] Zhang J, Huang F, Lin Z. Progress of nanocrystalline growth kinetics based on oriented attachment [J]. Nanoscale, 2010, 2(1): 18
doi: 10.1039/b9nr00047j pmid: 20648361
[28] Tartaj J, Fernández J F, Villafuerte-Castrejón M E. Preparation of PbTiO3 by seeding-assisted chemical sol-gel [J]. Mater. Res. Bull., 2001, 36(3): 479
doi: 10.1016/S0025-5408(01)00543-8
[29] Selbach S M, Wang G Z, Einarsrud M A, et al. Decomposition and crystallization of a sol-gel-derived PbTiO3 precursor [J]. J. Am. Ceram. Soc., 2007, 90(8): 2649
doi: 10.1111/jace.2007.90.issue-8
[30] Lin C T, Scanlan B W, McNeill J D, et al. Crystallization behavior in a low temperature acetate process for perovskite PbTiO3, Pb(Zr,Ti)O3, and (Pb1-x,Lax)(Zry,Ti1-y)1-x/4O3 bulk powders [J]. J. Mater. Res., 1992, 7(9): 2546
doi: 10.1557/JMR.1992.2546
[31] Mansoor M A, Ismail A, Yahya R, et al. Perovskite-structured PbTiO3 thin films grown from a single-source precursor [J]. Inorg. Chem., 2013, 52: 5624
pmid: 23627942
[32] Tang X G, Guo H K, Zhou Q F, et al. Synthesis and structure of nanocrystalline oxides based on PbTiO3 by sol-gel process [J]. Nanostruct. Mater., 1998, 10(2): 161
[33] Speight M V. Growth kinetics of grain-boundary precipitates [J]. Acta. Metall., 1968, 16(1): 133
[34] Kirchner H O K. Coarsening of Grain-Boundary Precipitates [J]. Metall. Mater. Trans B, 1971, 2(10): 2861
[35] Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals [J]. Science, 1998, 281(5379): 969
doi: 10.1126/science.281.5379.969 pmid: 9703506
[36] Penn R L, Banfield J F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO2 [J]. Am. Mineral., 1998, 83: 1077
[37] Zhang J, Lin Z, Lan Y, et al. A multistep oriented attachment kinetics: Coarsening of ZnS nanoparticle in concentrated NaOH [J]. J. Am. Ceram. Soc., 2006, 128(39): 12981
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!