Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (1): 23-32    DOI: 10.11901/1005.3093.2023.170
ARTICLES Current Issue | Archive | Adv Search |
Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel
YANG Renxian1,2, MA Shucheng1,2, CAI Xin1, ZHENG Leigang1, HU Xiaoqiang1,2(), LI Dianzhong1,2()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel. Chinese Journal of Materials Research, 2024, 38(1): 23-32.

Download:  HTML  PDF(15630KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

316LN austenitic stainless steel (316LN steel) is widely used as structural components in nuclear industries for their excellent corrosion resistance and high temperature mechanical properties. With the development of next-generation nuclear reactors, it is imperative to improve the high temperature creep properties of 316LN steel to warrant the corresponding components being subjected to higher temperatures. Alloying with rare earth (RE) elements, such as Cerium (Ce), are considered as a promising approach to enhance creep properties of the austenitic stainless steels. However, the effect of Ce on the microstructure evolution and creep performance of 316LN steel have not been reported. In this study, the effect of Ce on creep behavior and microstructure of 316LN steel in the temperature range 600oC to 700oC and stresses range150 MPa to 200 MPa was investigated by electronic creep tester, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the addition of 0.032%Ce could significantly improve the creep rupture life of 316LN steel. For instance, at 700oC/150 MPa, the creep life of 316LN steel with 0.032%Ce prominently increased from 313 h to 556 h. The creep stress exponent, activation energy and threshold stress of 316LN steel without Ce were found to be 7.64, 415.3 kJ/mol and 61.7 MPa, respectively, whereas those of 316LN steel with 0.032%Ce addition were corresponding to 9.07, 454.8 kJ/mol and 76.6 MPa. The creep mechanism of those two 316LN steels were also controlled by dislocation climbing. The addition of 0.032%Ce has not changed the creep mechanism of 316LN steel but clearly raised the creep activation energy and threshold stress. Furthermore, microstructural analysis demonstrates that the addition of 0.032%Ce may obviously promote the precipitation of Laves phase within the matrix. These intragranular Laves phases could inhibit the movement of dislocations during creep deformation, notably enhancing the creep resistance of the matrix. Therefore, the addition of 0.032%Ce remarkably improved the creep properties of 316LN steel by intragranular Laves precipitation strengthening.

Key words:  metallic materials      316LN austenitic stainless steel      creep      cerium      precipitation strengthening     
Received:  15 March 2023     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(2020YFB2006800);Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2021060);Science and Technology Innovation Program for Young and Middle-aged Talents in Shenyang(RC220474)
Corresponding Authors:  HU Xiaoqiang, Tel: (024)23971127, E-mail: xqhu@imr.ac.cn;
LI Dianzhong, Tel: (024)23971281, E-mail: dzli@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.170     OR     https://www.cjmr.org/EN/Y2024/V38/I1/23

SteelCSiMnCrMoNiCeNFeGrain size / μm
0Ce0.0100.311.6317.732.7713.7600.13Bal.77 ± 37
32Ce0.0130.261.8017.762.8313.650.0320.13Bal.66 ± 32
Table 1  The chemical compositions of two studied 316LN austenitic stainless steels (mass fraction, %)
Fig.1  Creep strain versus creep time curves (a, b) and the creep rate versus creep time curves (c, d) at 700oC under the stress of 150~200 MPa (a, c) and at 600oC, 650oC under 200 MPa (b, d) of 0Ce and 32Ce
Fig.2  Logarithmic curve of the minimum creep rate versus creep stress at 700oC (a) and the minimum creep rate versus the reciprocal of temperature multiplied by 1000 under 200 MPa (b) of 0Ce and 32Ce steel
Fig.3  SEM micrographs of 0Ce (a-c) and 32Ce (d-f) steel after crept under 200 MPa (a, d), 175 MPa (b, e), 150 MPa (c, f) at 700oC (Inset in d is the TEM observation of intragranular precipitates)
Fig.4  TEM image of intergranular precipitates in 0Ce steel after crept at 700℃/150 MPa (a) with corresponding elemental mapping of Mo (b) and Cr (c) (Inset SAED pattern in a was obtained from [1-1-1] zone axis of Sigma phase)
PhaseCSiMnCrMoNiFe
Laves2.0 ± 0.41.5 ± 0.11.515.3 ± 1.531.1 ± 2.46.9 ± 0.541.7
Chi0.9 ± 0.80.6 ± 0.11.824.5 ± 0.220.4 ± 0.64.2 ± 0.147.6
Sigma0.3 ± 0.11.2 ± 0.81.731.9 ± 1.511.1 ± 1.15.1 ± 0.548.7
Table 2  Chemical compositions of precipitates in 316LN obtained by STEM-EDS (mass fraction, %)
Fig.5  TEM images of intergranular precipitates in 32Ce steel after crept at 700oC/150 MPa (a, d) together with elemental mapping of Cr (b, e) and Mo (c, f) (The SAED pattern inset in a was obtained from [1-1-1] zone axis of Sigma phase while that in d was acquired from [1-5-3] zone axis of Chi phase)
Fig.6  TEM image of the intragranular precipitates in 32Ce steel after crept at 700oC/200 MPa (a) and the enlarged view of an intragranular precipitate (b) corresponding with SAED pattern (c), EDS line scanning analyses (d); TEM micrograph of the intragranular precipitates in 32Ce steel after crept at 700oC/150 MPa (e) and elemental distribution of Mo (f) and Si (g) acquired from the area delimited by the rectangles in (e)
Fig.7  SEM micrographs of 0Ce (a) and 32Ce (b) steel after interrupt crept at 700oC/150 MPa for about 180 h
Fig.8  Variation of minimum creep rate of the one-fifth power versus creep stress at 700oC of 0Ce and 32Ce steel
1 Roberts J T A. Structural Materials in Nuclear Power Systems [M]. New York: Springer, 1981: 201
2 Zinkle S J, Was G S.Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
3 GIF.A Technology Roadmap for Generation IV Nuclear Energy Systems [R]. U S: DOE, 2002
4 Zinkle S J, Busby J T.Structural materials for fission & fusion energy [J]. Mater. Today, 2009, 12: 12
5 Mathew M D, Laha K, Ganesan V.Improving creep strength of 316L stainless steel by alloying with nitrogen [J]. Mater. Sci. Eng., A, 2012, 535: 76
doi: 10.1016/j.msea.2011.12.044
6 Vodárek V.Creep behaviour and microstructural evolution in AISI 316LN + Nb steels at 650oC [J]. Mater. Sci. Eng., A, 2011, 528: 4232
doi: 10.1016/j.msea.2011.02.025
7 Vodárek V.Stability of Z-phase and M6X in creep-resistant steels [J]. Scr. Mater., 2012, 66: 678
doi: 10.1016/j.scriptamat.2012.01.024
8 Lu W, Hua X, Zhou X, et al. Aging precipitation behaviors of Nb-contained 316LN SS [J]. J. Alloys Compd., 2017, 701: 993
doi: 10.1016/j.jallcom.2017.01.103
9 Cai B, Kang J H, Hong C W, et al. Effects of N and Cu on the precipitation and the creep life of 316L austenitic stainless steel at 650oC [J]. Mater. Sci. Eng., A, 2016, 662: 198
doi: 10.1016/j.msea.2016.03.054
10 Wang L M. Application of Rare Earths Elements in Low Alloy and Alloy Steels [M]. Beijing: Metallurgical Industry Press, 2016
王龙妹. 稀土在低合金及合金钢中的应用 [M]. 北京: 冶金工业出版社, 2016
11 Xu Y W, Song S H, Wang J W.Effect of rare earth cerium on the creep properties of modified 9Cr-1Mo heat-resistant steel [J]. Mater. Lett., 2015, 161: 616
doi: 10.1016/j.matlet.2015.09.051
12 Laha K, Kyono J, Shinya N.An advanced creep cavitation resistance Cu-containing 18Cr-12Ni-Nb austenitic stainless steel [J]. Scr. Mater., 2007, 56: 915
doi: 10.1016/j.scriptamat.2006.12.030
13 Guimarães A V, Silveira R M S, Almeida L H, et al. Influence of yttrium addition on the microstructural evolution and mechanical properties of superalloy 718 [J]. Mater. Sci. Eng., A, 2020, 776: 139023
doi: 10.1016/j.msea.2020.139023
14 Nunes F C, Almeida L H, Dille J, et al. Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels [J]. Mater. Charact., 20017, 58: 132
doi: 10.1016/j.matchar.2006.04.007
15 Nunes F C, Dille J, Delplancke J L, et al. Yttrium addition to heat-resistant cast stainless steel [J]. Scr. Mater., 2006, 54: 1553
doi: 10.1016/j.scriptamat.2006.01.024
16 Chen L, Long H, Liu X, et al. Effect of rare earth alloying on creep rupture of economical 21Cr-11Ni-N heat-resistant austenitic steel at 650oC [J]. J. Rare Earths, 2016, 34: 447
doi: 10.1016/S1002-0721(16)60047-9
17 Kim S M, Kim J S, Kim KT, et al. Effect of Ce addition on secondary phase transformation and mechanical properties of 27Cr-7Ni hyper duplex stainless steels [J]. Mater. Sci. Eng., A, 2013, 573: 27
doi: 10.1016/j.msea.2013.02.044
18 Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007
张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007
19 Sherby O D, Taleff E M.Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids [J]. Mater. Sci. Eng., A, 2002, 322(1) 89
20 Rieth M.A comprising steady-state creep model for the austenitic AISI 316 L(N) steel [J]. J. Nucl. Mater., 2007, 367-370: 915
doi: 10.1016/j.jnucmat.2007.03.062
21 Ni Z F, Xue F. High temperature creep characteristics of in-situ micro-/nano-meter TiC dispersion strengthened 304 stainless steel [J]. Chin. J. Mater. Res., 2019, 33: 306
doi: 10.11901/1005.3093.2018.422
倪自飞, 薛 烽.原位微米/纳米TiC颗粒弥散强化304不锈钢的高温蠕变特性 [J]. 材料研究学报, 2019, 33: 306
doi: 10.11901/1005.3093.2018.422
22 Sahlaoui H, Makhlouf K, Sidhom H, et al. Effects of ageing conditions on the precipitates evolution, chromium depletion and intergranular corrosion susceptibility of AISI 316L: experimental and modeling results [J]. Mater. Sci. Eng., A, 2004, 372: 98
doi: 10.1016/j.msea.2003.12.017
23 Weiss B, Stickler R.Phase instabilities during high temperature exposure of 316 austenitic stainless steel [J]. Metall. Mater. Trans. B, 1972, 3: 851
doi: 10.1007/BF02647659
24 Koutsoukis T, Redjaïmia A, Fourlaris G.Characterization of precipitation sequences in superaustenitic stainless steels [J]. Solid State Phenom., 2011, 172-174: 493
doi: 10.4028/www.scientific.net/SSP.172-174
25 Sasikala G, Ray S K, Mannan S L.Kinetics of transformation of delta ferrite during creep in a type 316(N) stainless steel weld metal [J]. Mater. Sci. Eng., A, 2003, 359: 86
doi: 10.1016/S0921-5093(03)00371-X
26 Yang R X, Cai X, Zheng L G, et al. Enhancement of mechanism of cerium in 316LN austenitic stainless steel during creep at 700oC [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 507
doi: 10.1007/s40195-022-01467-7
27 Wang Y Q, Lin S H, Li N, et al. Overview of σ phase influence on mechanical properties of stainless steel [J]. J. Iron Steel Res., 2016, 28: 1
doi: 10.1007/s42243-020-00463-4
王永强, 林苏华, 李 娜 等.σ相析出对不锈钢力学性能的影响概述 [J]. 钢铁研究学报, 2016, 28: 1
28 Zakine C, Prioul C, Francois D.Influence of the χ-phase on the tensile properties of ODS steels [J]. J. Nucl. Mater., 1996, 230: 78
doi: 10.1016/0022-3115(95)00223-5
29 Zhang J S, Li P E, Jin J Z.Combined matrix/boundary precipitation strengthening in creep of Fe-15 Cr-25 Ni alloys [J]. Acta Metall. Mater., 1991, 39: 3063
doi: 10.1016/0956-7151(91)90039-4
30 Stein F, Leineweber A.Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties [J]. J. Mater. Sci., 2021, 56: 5321
doi: 10.1007/s10853-020-05509-2
[1] QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. 材料研究学报, 2024, 38(1): 43-50.
[2] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[3] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[4] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[5] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[6] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[7] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[8] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[9] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[10] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[11] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[12] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
No Suggested Reading articles found!