Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (11): 861-871    DOI: 10.11901/1005.3093.2023.498
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Nitrogen and Phosphorus Co-doped Graphene Oxide and Corrosion Resistance of Waterborne Composite Coatings NPGO/Epoxy Resin
LI Yufeng1,2(), FENG Feng1, LIU Shibo1, LIU Lishuang1, GAO Xiaohui1
1 College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
2 College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
Cite this article: 

LI Yufeng, FENG Feng, LIU Shibo, LIU Lishuang, GAO Xiaohui. Preparation of Nitrogen and Phosphorus Co-doped Graphene Oxide and Corrosion Resistance of Waterborne Composite Coatings NPGO/Epoxy Resin. Chinese Journal of Materials Research, 2024, 38(11): 861-871.

Download:  HTML  PDF(14854KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

N and P co-doped graphene oxide (NPGO) was prepared by low temperature solution method with graphene oxide (GO) as raw material, phytic acid (PA) as P source, and aqueous ammonia solution (NH3·H2O) as N source, and then, N and P co-doped graphene/epoxy resin (NPGO/EP) waterborne composite coating was prepared by using waterborne epoxy resin (EP) as the film former. The structure and morphology of NPGO were characterized by FTIR, XPS, XRD, SEM and TEM. The corrosion resistance of composite coatings was assessed by contact angle measurement, electrochemical measurement and salt spray test. The results show that NPGO/EP composite coating has better metal protection effect than pure EP coating, GO/EP composite coating, as well as single P doped graphene/epoxy resin (PGO/EP) composite coating and single N doped graphene/epoxy resin (NGO/EP) composite coating. NPGO/EP composite coating showing good corrosion resistance when the addition amount of NPGO is 1.5% (mass fraction): the electrochemical impedance reaches 4.85 × 108 Ω·cm2, and slight rust marks appear only after 480 h of salt spray test.

Key words:  materials failure and protection      corrosion resistance      nitrogen-phosphorus graphene      waterborne epoxy resin      composite coating     
Received:  11 October 2023     
ZTFLH:  TB304  
Fund: Fundamental Research Funds in Heilongjiang Provincial Universities(135509128)
Corresponding Authors:  LI Yufeng, Tel: 15145240877, E-mail: lyf1170@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.498     OR     https://www.cjmr.org/EN/Y2024/V38/I11/861

Fig.1  Schematic illustration of the synthesis route of NPGO
GOPGONGONPGONPGONPGONPGO
Amount / g0.030.030.030.010.020.030.04
Content / %1.51.51.50.51.01.52.0
Table 1  Amounts of graphene for different types of composite coatings
Fig.2  FTIR spectra of GO, PGO and NPGO
Fig.3  XPS spectra of NPGO
Fig.4  XRD patterns of GO、PGO and NPGO
Fig.5  SEM images of GO (a)、PGO (b) and NPGO (c)
Fig.6  TEM images of GO (a), PGO (b) and NPGO (c)
Fig.7  Variations of the contact angle and water absorption of the composite coating with the content of NPGO
Fig.8  Effects of various fillers on the adhesion strength of the composite coating
Fig.9  (a) Nyquist and (b) Bode plots of EP, GO/EP, NGO/EP, PGO/EP, NPGO/EP coatings after immersion in 3.5%NaCl solution for 24 h
SampleRs / Ω·cm2Rc / Ω·cm2CPEcRct / Ω·cm2CPEdl
Y0 / Ω·cm-2·s nncY0 / Ω·cm-2·s nnc
EP356731.32 × 1068.12 × 10-91.4423.72 × 1064.25 × 10-90.7936
GO/EP282541.03 × 1081.35 × 10-100.93581.04 × 1076.13 × 10-100.8393
NGO/EP322612.61 × 1084.02 × 10-100.77543.97 × 1072.66 × 10-111.986
PGO/EP264772.52 × 1082.65 × 10-100.93642.78 × 1071.93 × 10-100.9238
NPGO/EP328703.98 × 1082.39 × 10-100.81454.41 × 1072.22 × 10-101.071
Table 2  Fitted data of EIS in Fig.9
Fig.10  Equivalent circuit model for fitted EIS of various coatings
Fig.11  (a, c, e, g) Nyquist and (b, d, f, h) Bode plots of NPGO/EP composite coatings with different contents of NPGO after immersion in 3.5%NaCl solution for (a, b) 24 h, (c, d) 240 h, (e, f) 480 h, (g, h) 720 h
Fig.12  Macro-photos of (a) EP, (b) GO/ EP, (c) NGO/EP, (d) PGO/EP, (e) 0.5%NPGO/EP, (f) 1.0%NPGO/EP, (g) 1.5%NPGO/EP and (h) 2.0%NPGO/EP coatings after salt spray test for different time
Fig.13  Schematic diagram of corrosion resistant mechanism of NPGO/EP composite coating
1 Kang D, Lee M, Lee S J, et al. Enhanced adhesion and corrosion resistance of reduced graphene oxide coated-steel with iron oxide nanoparticles [J]. Appl. Surf. Sci., 2023, 624: 157121
2 Jiang D, Huang G S, Ma L, et al. Research progress of bionic surface/coating in metal corrosion protection [J]. Surf. Technol., 2022, 51(6): 180
姜 丹, 黄国胜, 马 力 等. 仿生表面/涂层在金属腐蚀防护中的研究进展 [J]. 表面技术, 2022, 51(6): 180
3 Ding J H, Rahman O U, Peng W J, et al. A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne graphene/epoxy coatings [J]. Appl. Surf. Sci., 2018, 427: 981
4 Gao X Z, Liu H J, Cheng F, et al. Thermoresponsive polyaniline nanoparticles: preparation, characterization, and their potential application in waterborne anticorrosion coatings [J]. Chem. Eng. J., 2016, 283: 682
5 Tang G W, Ren T T, Yan Z S, et al. Corrosion resistance of a self-curing waterborne epoxy resin coating [J]. J. Coat. Technol. Res., 2019, 16(3): 895
doi: 10.1007/s11998-018-00166-2
6 Wang C J, Wang Z H, Liu S P, et al. Anti-corrosion and wear-resistant coating of waterborne epoxy resin by concrete-like three-dimensional functionalized framework fillers [J]. Chem. Eng. Sci., 2021, 242: 116748
7 Liu S, Gu L, Zhao H C, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings [J]. J. Mater. Sci. Technol., 2016, 32(5): 425
doi: 10.1016/j.jmst.2015.12.017
8 Malhotra R, Han Y M, Nijhuis C A, et al. Graphene nanocoating provides superb long-lasting corrosion protection to titanium alloy [J]. Dent. Mater., 2021, 37(10): 1553
doi: 10.1016/j.dental.2021.08.004 pmid: 34420797
9 Zhang T T, Zhang Y K, Chen C, et al. Corrosion-resistant SiO2-graphene oxide/epoxy coating reinforced by effective electron beam curing [J]. Prog. Org. Coat., 2023, 184: 107885
10 Chen H Y, Yu Q Q, Yang J J, et al. Preparation of amino-functionalized graphene oxide/sulfonated polyaniline and its application in waterborne epoxy anticorrosive coatings [J]. Fine Chem., 2022, 39(4): 837
陈虹雨, 于倩倩, 杨建军 等. 氨基化氧化石墨烯/磺化聚苯胺的制备及在水性环氧防腐涂料的应用 [J]. 精细化工, 2022, 39(4): 837
11 Grajewska K, Lieder M. Functionalization of graphene oxide coatings with phosphorus atoms and their corrosion resistance in sodium chloride environment [J]. Diamond Relat. Mater., 2021, 118: 108533
12 Wang N, Gao H Y, Zhang J, et al. Phytic acid intercalated graphene oxide for anticorrosive reinforcement of waterborne epoxy resin coating [J]. Polymers, 2019, 11(12): 1950
13 Li Y F, Zhang N F, Liu L S, et al. Preparation of phosphorus-containing graphene and corrosion resistance of composite coating [J]. Chin. J. Mater. Res., 2022, 36(12): 933
doi: 10.11901/1005.3093.2021.556
李玉峰, 张念飞, 刘丽爽 等. 含磷石墨烯的制备及复合涂层的耐蚀性能 [J]. 材料研究学报, 2022, 36(12): 933
doi: 10.11901/1005.3093.2021.556
14 Chhetri S, Ghosh S, Samanta P, et al. Effect of Fe3O4-decorated N-doped reduced graphene oxide nanohybrid on the anticorrosion performance of epoxy composite coating [J]. ChemistrySelect, 2019, 4(46): 13446
doi: 10.1002/slct.201902348
15 Ren S M, Cui M J, Li W S, et al. N-doping of graphene: toward long-term corrosion protection of Cu [J]. J. Mater. Chem., 2018, 6A(47) : 24136
16 Ma J Z, Xiang Z H, Zhang J T. Three-dimensional nitrogen and phosphorous co-doped graphene aerogel electrocatalysts for efficient oxygen reduction reaction [J]. Sci. China Chem., 2018, 61(5): 592
17 Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6): 1339
18 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paints and varnishes—Pull-off test for adhesion [S]. Beijing: Standards Press of China, 2007
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆拉开法附着力试验 [S]. 北京: 中国标准出版社, 2007
19 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paints and varnishes—Determination of resistance to neutral salt spray (fog) [S]. Beijing: Standards Press of China, 2007
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆 耐中性盐雾性能的测定 [S]. 北京: 中国标准出版社, 2007
20 Ghozatloo A, Hosseini M, Shariaty-Niassar M. Improvement and enhancement of natural gas hydrate formation process by Hummers' graphene [J]. J. Nat. Gas Sci. Eng., 2015, 27: 1229
21 Liu X B, Zou S, Liu K X, et al. Highly compressible three-dimensional graphene hydrogel for foldable all-solid-state supercapacitor [J]. J. Power Sources, 2018, 384: 214
22 Shang Y, Xu H Z, Li M Y, et al. Preparation of N-doped graphene by hydrothermal method and interpretation of N-doped mechanism [J]. Nano, 2017, 12(2): 1750018
23 Ollik K, Rybarczyk M, Karczewski J, et al. Fabrication of anti-corrosion nitrogen doped graphene oxide coatings by electrophoretic deposition [J]. Appl. Surf. Sci., 2020, 499: 143914
24 Tan B, Zhao H M, Zhang Y B, et al. Amphiphilic PA-induced three-dimensional graphene macrostructure with enhanced removal of heavy metal ions [J]. J. Colloid Interface Sci., 2018, 512: 853
25 Gao B H, Sun Y, Miao Y C, et al. Fluorometric detection of pH and quercetin based on nitrogen and phosphorus co-doped highly luminescent graphene-analogous flakes [J]. Analyst, 2020, 145(1): 115
26 Li G F, Li Y W, Deng J X, et al. Ultrahigh rate capability supercapacitors based on tremella-like nitrogen and phosphorus co-doped graphene [J]. Mater. Chem. Front., 2020, 4(9): 2704
27 Wu Y, Yang F, Liu X X, et al. Fabrication of N, P-codoped reduced graphene oxide and its application for organic dye removal [J]. Appl. Surf. Sci., 2018, 435: 281
28 Shen X Y, Li X D, Zhao F H, et al. Preparation and structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application [J]. 2D Mater., 2019, 6(3): 035020
29 Chae S, Panomsuwan G, Bratescu M A, et al. p-type doping of graphene with cationic nitrogen [J]. ACS Appl. Nano Mater., 2019, 2(3): 1350
doi: 10.1021/acsanm.8b02237
30 Saquib M, Bharadwaj A, Kushwaha H S, et al. Chloride corrosion resistant nitrogen doped reduced graphene oxide/platinum electrocatalyst for hydrogen evolution reaction in an acidic medium [J]. ChemistrySelect, 2020, 5(5): 1739
31 Jang D, Lee S, Kim S, et al. Production of P, N co-doped graphene-based materials by a solution process and their electrocatalytic performance for oxygen reduction reaction [J]. ChemNanoMat, 2018, 4(1): 118
32 Tian Y, Wei Z, Zhang K H, et al. Three-dimensional phosphorus-doped graphene as an efficient metal-free electrocatalyst for electrochemical sensing [J]. Sens. Actuators, 2017, 241B: 584
33 Li C C, Xu J, Xu Q J, et al. Synthesis of Ti3C2 MXene@PANI composites for excellent anticorrosion performance of waterborne epoxy coating [J]. Prog. Org. Coat., 2022, 165: 106673
34 Zhang R Y, Yu X, Yang Q W, et al. The role of graphene in anti-corrosion coatings: a review [J]. Constr. Build. Mater., 2021, 294: 123613
[1] JING Ting, LIANG Zheming, YU Yang. Acoustic Emission Characteristics of Fatigue Propagation of Superalloy Based on Quadratic K-entropy[J]. 材料研究学报, 2024, 38(7): 490-498.
[2] MA Fei, WANG Chuang, GUO Wuming, SHI Xiangdong, SUN Jianying, PANG Gang. Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings[J]. 材料研究学报, 2024, 38(4): 297-307.
[3] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[4] CUI Huaiyun, LIU Zhiyong, LU Lin. Critical Corrosion Factors for J55 Tubing Steel in a Simulated Annulus Environment of CO2 Injection Well[J]. 材料研究学报, 2024, 38(4): 308-320.
[5] YAN Junzhu, GAO Ming, YU Xiaoming, TAN Lili. Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag[J]. 材料研究学报, 2024, 38(3): 177-186.
[6] LI Feiyang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, TANG Yanbing. Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution[J]. 材料研究学报, 2024, 38(3): 221-231.
[7] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[8] ZHANG Zejiang, LI Xinmei. Wear and Corrosion Resistance of Laser Cladding CoCrFeNiSi x High Entropy Alloy Coating[J]. 材料研究学报, 2024, 38(10): 741-750.
[9] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[10] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[11] XU Wenyu, SUN Jiawen, ZHU Yaofeng. Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating[J]. 材料研究学报, 2023, 37(12): 952-960.
[12] WANG Xingping, XUE Wenbin, WANG Wenxuan. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. 材料研究学报, 2023, 37(10): 759-769.
[13] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
[14] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[15] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
No Suggested Reading articles found!