Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (11): 872-880    DOI: 10.11901/1005.3093.2023.493
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Bi-functional Catalysts (Cu-Co/X-MMT)
LUO Hongxu, ZHAO Yonghua(), ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, WANG Huan
School of Chemistry & Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
Cite this article: 

LUO Hongxu, ZHAO Yonghua, ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, WANG Huan. Preparation and Properties of Bi-functional Catalysts (Cu-Co/X-MMT). Chinese Journal of Materials Research, 2024, 38(11): 872-880.

Download:  HTML  PDF(7139KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series of bi-functional catalysts (Cu-Co/X-MMT) were prepared via the impregnation method with oxide-pillared montmorillonite (X-MMT, X = SiO2, Al2O3, ZrO2, TiO2) obtained from Na-montmorillonite (Na-MMT) as the solid acid, Cu as active component and Co as promoter. The acquired catalysts were characterized by XRD, N2 adsorption-desorption at low temperature, NH3-TPD, H2-TPR, and XPS. The effect of different kinds of X-MMT on the steam reforming of dimethyl ether (SRD) reaction performance of the acquired bi-functional catalysts was investigated. The results show that the structure and acidity of X-MMT are significantly changed compared with Na-MMT, which is dependent on the type of oxide X, meanwhile, different X-MMT affects the particle size and reduction degree of copper, and thus influencing the SRD reaction performance of bi-functional catalysts. Among others, the Cu-Co/SiO2-MMT bifunctional catalyst exhibits the best SRD performance, with the dimethyl ether conversion and H2 yield reaching 80.3% and 57.3% under the conditions of 0.1 MPa, 350oC and gas hour space velocity (GHSV) of 3000 mL/(g·h), respectively.

Key words:  composite      pillared montmorillonite      dimethyl ether      steam reforming      hydrogen production     
Received:  08 October 2023     
ZTFLH:  O643.3  
Fund: National Natural Science Foundation of China(22075120);Applied Basic Research Project of Liaoning Province(2023JH2/101300216)
Corresponding Authors:  ZHAO Yonghua, Tel: (0416)4199013, E-mail: lgdzyh@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.493     OR     https://www.cjmr.org/EN/Y2024/V38/I11/872

Fig.1  XRD patterns of Cu-Co/X-MMT (a) Cu-Co/Na-MMT, (b) Cu-Co/SiO2-MMT, (c) Cu-Co/Al2O3-MMT, (d) Cu-Co/ZrO2-MMT, (e) Cu-Co/TiO2-MMT
Fig.2  TEM of Cu-Co/X-MMT (a) Cu-Co/Na-MMT, (b) Cu-Co/SiO2-MMT, (c) Cu-Co/Al2O3-MMT, (d) Cu-Co/ZrO2-MMT
Fig.3  XRD patterns of reduced Cu-Co/X-MMT (a) Cu-Co/Na-MMT, (b) Cu-Co/SiO2-MMT, (c) Cu-Co/Al2O3-MMT, (d) Cu-Co/ZrO2-MMT, (e) Cu-Co/TiO2-MMT
SampleCu-Co/Na-MMTCu-Co/SiO2-MMTCu-Co/Al2O3-MMTCu-Co/ZrO2-MMTCu-Co /TiO2-MMT
Particle size / nm35.2830.6530.5243.2728.99
Table 1  Cu particle size of reduced catalysts
Fig.4  N2 adsorption-desorption isotherms of different samples (a) Na-MMT, (b) SiO2-MMT, (c) Al2O3-MMT, (d) ZrO2-MMT, (e) TiO2-MMT
SampleBET specific surface area / m2·g-1Pore volume / cm3·gAverage pore size / nm
Na-MMT380.088.1
SiO2-MMT2260.133.6
Al2O3-MMT1130.073.7
ZrO2-MMT1880.093.2
TiO2-MMT1490.257.0
Table 2  Structural characteristics of samples
Fig.5  NH3-TPD profiles of samples (a) Na-MMT, (b) SiO2-MMT, (c) Al2O3-MMT, (d) ZrO2-MMT, (e) TiO2-MMT
Fig.6  H2-TPR profiles of Cu-Co/X-MMT (a) Cu-Co/Na-MMT, (b) Cu-Co/SiO2-MMT, (c) Cu-Co/Al2O3-MMT, (d) Cu-Co/ZrO2-MMT, (e) Cu-Co/TiO2-MMT
Fig.7  Cu 2p XPS spectra of the reduced catalysts Cu-Co/Na-MMT (a), Cu-Co/SiO2-MMT (b), Cu-Co/Al2O3-MMT (c), Cu-Co/ZrO2-MMT (d), Cu-Co/TiO2-MMT (e)
Fig.8  Cu LMM XAES of the reduced catalysts Cu-Co/Na-MMT (a), Cu-Co/SiO2-MMT (b), Cu-Co/Al2O3-MMT (c), Cu-Co/ZrO2-MMT (d), Cu-Co/TiO2-MMT (e)
CatalystKEa/eVXb Cu0/ %Xc Cu+/ %
Cu+Cu0
Cu-Co/Na-MMT914.23918.1150.849.2
Cu-Co/SiO2-MMT914.04918.0162.337.7
Cu-Co/Al2O3-MMT914.02918.1154.145.6
Cu-Co/ZrO2-MMT914.02918.0058.141.9
Cu-Co/TiO2-MMT914.07918.1742.257.8
Table 3  Data of Cu LMM XAES peak of reduced catalyst
Fig.9  DME conversion (a) and H2 yield (b) of Cu-Co/X-MMT (Reaction conditions: p = 0.1 MPa, T = 350oC, GHSV = 3000 mL/(g·h))
Fig.10  Selectivity of the carbon-containing products over bifunctional catalysts
1 Meng X Y, Chen M Y, Gu A L, et al. China's hydrogen development strategy in the context of double carbon targets [J]. Nat. Gas Ind., 2022, 42(4): 156
孟翔宇, 陈铭韵, 顾阿伦 等. “双碳”目标下中国氢能发展战略 [J]. 天然气工业, 2022, 42(4): 156
2 Hwang J, Maharjan K, Cho H. A review of hydrogen utilization in power generation and transportation sectors: achievements and future challenges [J]. Int. J. Hydrogen Energy, 2023, 48(74): 28629
3 Ouyang J, Li X, Zhu Y X, et al. Enhanced photocatalytic hydrogen production and carbon dioxide reduction [J]. Chin. J. Mater. Res., 2022, 36(2): 152
doi: 10.11901/1005.3093.2020.495
欧阳杰, 李 雪, 祝玉鑫 等. 开放式氮缺陷氮化碳中空微球用于增强光解水制氢和CO2还原 [J]. 材料研究学报, 2022, 36(2): 152
doi: 10.11901/1005.3093.2020.495
4 Jing J Y, Liu L, Xu K, et al. Improved hydrogen production performance of Ni-Al2O3/CaO-CaZrO3 composite catalyst for CO2 sorption enhanced CH4/H2O reforming [J]. Int. J. Hydrogen Energy, 2023, 48(7): 2558
5 Wang E W, Zhang B, Li X M, et al. Fabrication of catalytic carbon membranes and their intensification of hydrogen production reaction from methanol steam reforming [J]. Mater. Rep., 2023, 37(17): 22010107
汪尔文, 张 兵, 李欣明 等. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应 [J]. 材料导报, 2023, 37(17): 22010107
6 Ito S I, Kameoka S. Effect of strong metal-oxide interaction on low-temperature ethanol reforming over Fe-promoted Rh/SiO2 catalyst [J]. Appl. Catal., 2021, 617A: 118113
7 Gao T Y, Zhao Y H, Zheng Z, et al. Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether [J]. J. Fuel Chem. Technol., 2021, 49(10): 1495
高天宇, 赵永华, 郑 择 等. 酸活化蒙脱土在二甲醚水蒸气重整制氢中的应用 [J]. 燃料化学学报, 2021, 49(10): 1495
8 Long X, Zhang Q J, Liu Z T, et al. Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether [J]. Appl. Catal., 2013, 134-135B: 381
9 Feng D M, Zuo Y Z, Wang D Z, et al. Steam reforming of dimethyl ether over coupled ZSM-5 and Cu-Zn-based catalysts [J]. Chin. J. Catal., 2009, 30: 223
10 Faungnawakij K, Kikuchi R, Eguchi K. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether [J]. J. Power Sources, 2007, 164: 73
11 Faungnawakij K, Viriya-Empikul N, Tanthapanichakoon W. Evaluation of the thermodynamic equilibrium of the autothermal reforming of dimethyl ether [J]. Int. J. Hydrogen Energy, 2011, 36: 5865
12 Kim D, Choi B, Park G, et al. Effect of γ-Al2O3 characteristics on hydrogen production of Cu/γ-Al2O3 catalyst for steam reforming of dimethyl ether [J]. Chem. Eng. Sci., 2020, 216: 115535
13 Yang M, Men Y, Li S L, et al. Hydrogen production by steam reforming of dimethyl ether over ZnO-Al2O3 bi-functional catalyst [J]. Int. J. Hydrogen Energy, 2012, 37(10): 8360
14 Gao T Y, Zhao Y H, Zhang Q J, et al. Zinc oxide modified HZSM-5 as an efficient acidic catalyst for hydrogen production by steam reforming of dimethyl ether [J]. React. Kinet. Mech. Cat., 2019, 128: 235
15 Nishiguchi T, Oka K, Matsumoto T, et al. Durability of WO3/ZrO2-CuO/CeO2 catalysts for steam reforming of dimethyl ether [J]. Appl. Catal., 2006, 301A(1) : 66
16 Sun X M, Sha Q H, Wang C W, et al. Application of copper-based catalysts for hydrogen production in methanol steam reforming [J]. CIESC J., 2021, 72(12): 5975
doi: 10.11949/0438-1157.20211085
孙晓明, 沙琪昊, 王陈伟 等. 用于甲醇重整制氢的铜基催化剂研究进展 [J]. 化工学报, 2021, 72(12): 5975
doi: 10.11949/0438-1157.20211085
17 Zhao Y H, Song Y H, Hao Q Q, et al. Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer-Tropsch synthesis [J]. Fuel Process. Technol., 2015, 138: 116
18 Cai Y F, Zhou Y J, Lu J F, et al. Removal of methylene blue by Fenton-like system with alkali-activated montmorillonite supported iron catalyst [J]. Acta Mater. Compos. Sin., 2023, 40(8): 4601
蔡玉福, 周艳军, 路君凤 等. 碱活化蒙脱土负载铁类芬顿体系去除亚甲基蓝 [J]. 复合材料学报, 2023, 40(8): 4601
19 Li J R, Hu M C, Zuo S F, et al. Catalytic combustion of volatile organic compounds on pillared interlayered clay (PILC)-based catalysts [J]. Curr. Opin. Chem. Eng., 2018, 20: 93
20 Hao Q Q, Wang G W, Liu Z T, et al. Co/Pillared clay bifunctional catalyst for controlling the product distribution of Fischer-Tropsch synthesis [J]. Ind. Eng. Chem. Res., 2010, 49: 9004
21 Luo H X, Zhao Y H, Zhang Q J, et al. The role of promoters in Cu/Acid-MMT catalysts for production of hydrogen via steam reforming of dimethyl ether [J]. J. Chem. Technol. Biotechnol., 2023, 98: 718
22 Moreno S, Kou R S, Molina R, et al. Al-, Al, Zr-, and Zr-pillared montmorillonites and saponites: preparation, characterization, and catalytic activity in heptane hydroconversion [J]. J. Catal., 1999, 182(1): 174
23 Chen H, Cui H S, Lv Y, et al. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: Effects of ZnO morphology and oxygen vacancy [J]. Fuel, 2022, 314: 123035
24 Huang J J, Cai J M, Ma K, et al. Ga2O3-modifified Cu/-SiO2 catalysts with low CO selectivity for catalytic steam reforming [J]. Acta Phys. Chim. Sin., 2019, 35: 431
黄静静, 蔡金孟, 马 奎 等. Ga2O3改性Cu/SiO2催化剂降低水蒸气催化重整产物中CO选择性 [J]. 物理化学学报, 2019, 35: 431
25 Qi X L, Zhou L M, Jiang X H, et al. Montmorillonite-supported copper(I) for catalyzing N-arylation of nitrogen heterocycles [J]. Chin. J. Catal., 2012, 33: 1877
綦晓龙, 周丽梅, 蒋晓慧 等. 蒙脱土负载Cu+催化含氮杂环化合物的N-芳基化反应 [J]. 催化学报, 2012, 33: 1877
doi: 10.1016/S1872-2067(11)60458-0
26 Wang D Z, Feng X, Zhang J, et al. Effect of promoter M (M = Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol [J]. J. Fuel Chem. Technol., 2019, 47: 1251
王东哲, 冯 旭, 张 健 等. 助剂M (M = Cr、Zn、Y、La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响 [J]. 燃料化学学报, 2019, 47: 1251
27 Huang J J, Ding T, Ma K, et al. Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming [J]. ChemCatChem, 2018, 10: 3862
[1] CUI Sikai, FU Guangyan, LIN Lihai, YAN Yukun, LI Chusen. Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature[J]. 材料研究学报, 2024, 38(9): 659-668.
[2] ZHANG Hengyu, HUANG Zhaodan, DUAN Tigang, WEN Qing, LI Ruocan, WU Houran, MA Li, ZHANG Haibing. Electrocatalytic Oxygen Reduction of Carbon-based Hierarchical Pt@Co Composite Catalytic Cathode in Natural Seawater[J]. 材料研究学报, 2024, 38(8): 632-640.
[3] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
[4] TAN Shangrong, YAO Zhuo, LIU Zechen, JIANG Yilei, GUO Shiqi, LI Lili. Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites[J]. 材料研究学报, 2024, 38(8): 576-584.
[5] HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. 材料研究学报, 2024, 38(8): 569-575.
[6] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[7] ZHOU Hui, DU Bin, YANG Pengbin, JIN Dangqin, XIAO Jiali, SHEN Ming, WANG Shengwen. Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities[J]. 材料研究学报, 2024, 38(7): 549-560.
[8] LIU Ying, CHEN Ping, ZHOU Xue, SUN Xiaojie, WANG Ruiqi. Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites[J]. 材料研究学报, 2024, 38(6): 453-462.
[9] XU Dongwei, ZHANG Mingju, SHEN Zhihao, XIA Chenlu, XU Jingman, GUO Xiaoqin, XIONG Xuhai, CHEN Ping. Microwave Absorption Performance of Encapsulated Magnetic Particles With Nitrogen-Doped Carbon Nanotubes Fe3O4@NCNTs[J]. 材料研究学报, 2024, 38(6): 430-436.
[10] BIAN Pengbo, HAN Xiuzhu, ZHANG Junfan, ZHU Shize, XIAO Bolv, MA Zongyi. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite[J]. 材料研究学报, 2024, 38(6): 401-409.
[11] MA Fei, WANG Chuang, GUO Wuming, SHI Xiangdong, SUN Jianying, PANG Gang. Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings[J]. 材料研究学报, 2024, 38(4): 297-307.
[12] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[13] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[14] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[15] WU Jing, ZHANG Ziyi, HAN Xu, HOU Xingyan, LI Xueyan, LI Shasha, LIU Wen, LI Peng. Preparation and Performance of S/NiFeP/KB Composites Electrocatalyst for Lithium Sulfur Batteries[J]. 材料研究学报, 2024, 38(11): 828-836.
No Suggested Reading articles found!