|
|
Preparation and Properties of Bi-functional Catalysts (Cu-Co/X-MMT) |
LUO Hongxu, ZHAO Yonghua( ), ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, WANG Huan |
School of Chemistry & Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China |
|
Cite this article:
LUO Hongxu, ZHAO Yonghua, ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, WANG Huan. Preparation and Properties of Bi-functional Catalysts (Cu-Co/X-MMT). Chinese Journal of Materials Research, 2024, 38(11): 872-880.
|
Abstract A series of bi-functional catalysts (Cu-Co/X-MMT) were prepared via the impregnation method with oxide-pillared montmorillonite (X-MMT, X = SiO2, Al2O3, ZrO2, TiO2) obtained from Na-montmorillonite (Na-MMT) as the solid acid, Cu as active component and Co as promoter. The acquired catalysts were characterized by XRD, N2 adsorption-desorption at low temperature, NH3-TPD, H2-TPR, and XPS. The effect of different kinds of X-MMT on the steam reforming of dimethyl ether (SRD) reaction performance of the acquired bi-functional catalysts was investigated. The results show that the structure and acidity of X-MMT are significantly changed compared with Na-MMT, which is dependent on the type of oxide X, meanwhile, different X-MMT affects the particle size and reduction degree of copper, and thus influencing the SRD reaction performance of bi-functional catalysts. Among others, the Cu-Co/SiO2-MMT bifunctional catalyst exhibits the best SRD performance, with the dimethyl ether conversion and H2 yield reaching 80.3% and 57.3% under the conditions of 0.1 MPa, 350oC and gas hour space velocity (GHSV) of 3000 mL/(g·h), respectively.
|
Received: 08 October 2023
|
|
Fund: National Natural Science Foundation of China(22075120);Applied Basic Research Project of Liaoning Province(2023JH2/101300216) |
Corresponding Authors:
ZHAO Yonghua, Tel: (0416)4199013, E-mail: lgdzyh@163.com
|
1 |
Meng X Y, Chen M Y, Gu A L, et al. China's hydrogen development strategy in the context of double carbon targets [J]. Nat. Gas Ind., 2022, 42(4): 156
|
|
孟翔宇, 陈铭韵, 顾阿伦 等. “双碳”目标下中国氢能发展战略 [J]. 天然气工业, 2022, 42(4): 156
|
2 |
Hwang J, Maharjan K, Cho H. A review of hydrogen utilization in power generation and transportation sectors: achievements and future challenges [J]. Int. J. Hydrogen Energy, 2023, 48(74): 28629
|
3 |
Ouyang J, Li X, Zhu Y X, et al. Enhanced photocatalytic hydrogen production and carbon dioxide reduction [J]. Chin. J. Mater. Res., 2022, 36(2): 152
doi: 10.11901/1005.3093.2020.495
|
|
欧阳杰, 李 雪, 祝玉鑫 等. 开放式氮缺陷氮化碳中空微球用于增强光解水制氢和CO2还原 [J]. 材料研究学报, 2022, 36(2): 152
doi: 10.11901/1005.3093.2020.495
|
4 |
Jing J Y, Liu L, Xu K, et al. Improved hydrogen production performance of Ni-Al2O3/CaO-CaZrO3 composite catalyst for CO2 sorption enhanced CH4/H2O reforming [J]. Int. J. Hydrogen Energy, 2023, 48(7): 2558
|
5 |
Wang E W, Zhang B, Li X M, et al. Fabrication of catalytic carbon membranes and their intensification of hydrogen production reaction from methanol steam reforming [J]. Mater. Rep., 2023, 37(17): 22010107
|
|
汪尔文, 张 兵, 李欣明 等. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应 [J]. 材料导报, 2023, 37(17): 22010107
|
6 |
Ito S I, Kameoka S. Effect of strong metal-oxide interaction on low-temperature ethanol reforming over Fe-promoted Rh/SiO2 catalyst [J]. Appl. Catal., 2021, 617A: 118113
|
7 |
Gao T Y, Zhao Y H, Zheng Z, et al. Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether [J]. J. Fuel Chem. Technol., 2021, 49(10): 1495
|
|
高天宇, 赵永华, 郑 择 等. 酸活化蒙脱土在二甲醚水蒸气重整制氢中的应用 [J]. 燃料化学学报, 2021, 49(10): 1495
|
8 |
Long X, Zhang Q J, Liu Z T, et al. Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether [J]. Appl. Catal., 2013, 134-135B: 381
|
9 |
Feng D M, Zuo Y Z, Wang D Z, et al. Steam reforming of dimethyl ether over coupled ZSM-5 and Cu-Zn-based catalysts [J]. Chin. J. Catal., 2009, 30: 223
|
10 |
Faungnawakij K, Kikuchi R, Eguchi K. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether [J]. J. Power Sources, 2007, 164: 73
|
11 |
Faungnawakij K, Viriya-Empikul N, Tanthapanichakoon W. Evaluation of the thermodynamic equilibrium of the autothermal reforming of dimethyl ether [J]. Int. J. Hydrogen Energy, 2011, 36: 5865
|
12 |
Kim D, Choi B, Park G, et al. Effect of γ-Al2O3 characteristics on hydrogen production of Cu/γ-Al2O3 catalyst for steam reforming of dimethyl ether [J]. Chem. Eng. Sci., 2020, 216: 115535
|
13 |
Yang M, Men Y, Li S L, et al. Hydrogen production by steam reforming of dimethyl ether over ZnO-Al2O3 bi-functional catalyst [J]. Int. J. Hydrogen Energy, 2012, 37(10): 8360
|
14 |
Gao T Y, Zhao Y H, Zhang Q J, et al. Zinc oxide modified HZSM-5 as an efficient acidic catalyst for hydrogen production by steam reforming of dimethyl ether [J]. React. Kinet. Mech. Cat., 2019, 128: 235
|
15 |
Nishiguchi T, Oka K, Matsumoto T, et al. Durability of WO3/ZrO2-CuO/CeO2 catalysts for steam reforming of dimethyl ether [J]. Appl. Catal., 2006, 301A(1) : 66
|
16 |
Sun X M, Sha Q H, Wang C W, et al. Application of copper-based catalysts for hydrogen production in methanol steam reforming [J]. CIESC J., 2021, 72(12): 5975
doi: 10.11949/0438-1157.20211085
|
|
孙晓明, 沙琪昊, 王陈伟 等. 用于甲醇重整制氢的铜基催化剂研究进展 [J]. 化工学报, 2021, 72(12): 5975
doi: 10.11949/0438-1157.20211085
|
17 |
Zhao Y H, Song Y H, Hao Q Q, et al. Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer-Tropsch synthesis [J]. Fuel Process. Technol., 2015, 138: 116
|
18 |
Cai Y F, Zhou Y J, Lu J F, et al. Removal of methylene blue by Fenton-like system with alkali-activated montmorillonite supported iron catalyst [J]. Acta Mater. Compos. Sin., 2023, 40(8): 4601
|
|
蔡玉福, 周艳军, 路君凤 等. 碱活化蒙脱土负载铁类芬顿体系去除亚甲基蓝 [J]. 复合材料学报, 2023, 40(8): 4601
|
19 |
Li J R, Hu M C, Zuo S F, et al. Catalytic combustion of volatile organic compounds on pillared interlayered clay (PILC)-based catalysts [J]. Curr. Opin. Chem. Eng., 2018, 20: 93
|
20 |
Hao Q Q, Wang G W, Liu Z T, et al. Co/Pillared clay bifunctional catalyst for controlling the product distribution of Fischer-Tropsch synthesis [J]. Ind. Eng. Chem. Res., 2010, 49: 9004
|
21 |
Luo H X, Zhao Y H, Zhang Q J, et al. The role of promoters in Cu/Acid-MMT catalysts for production of hydrogen via steam reforming of dimethyl ether [J]. J. Chem. Technol. Biotechnol., 2023, 98: 718
|
22 |
Moreno S, Kou R S, Molina R, et al. Al-, Al, Zr-, and Zr-pillared montmorillonites and saponites: preparation, characterization, and catalytic activity in heptane hydroconversion [J]. J. Catal., 1999, 182(1): 174
|
23 |
Chen H, Cui H S, Lv Y, et al. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: Effects of ZnO morphology and oxygen vacancy [J]. Fuel, 2022, 314: 123035
|
24 |
Huang J J, Cai J M, Ma K, et al. Ga2O3-modifified Cu/-SiO2 catalysts with low CO selectivity for catalytic steam reforming [J]. Acta Phys. Chim. Sin., 2019, 35: 431
|
|
黄静静, 蔡金孟, 马 奎 等. Ga2O3改性Cu/SiO2催化剂降低水蒸气催化重整产物中CO选择性 [J]. 物理化学学报, 2019, 35: 431
|
25 |
Qi X L, Zhou L M, Jiang X H, et al. Montmorillonite-supported copper(I) for catalyzing N-arylation of nitrogen heterocycles [J]. Chin. J. Catal., 2012, 33: 1877
|
|
綦晓龙, 周丽梅, 蒋晓慧 等. 蒙脱土负载Cu+催化含氮杂环化合物的N-芳基化反应 [J]. 催化学报, 2012, 33: 1877
doi: 10.1016/S1872-2067(11)60458-0
|
26 |
Wang D Z, Feng X, Zhang J, et al. Effect of promoter M (M = Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol [J]. J. Fuel Chem. Technol., 2019, 47: 1251
|
|
王东哲, 冯 旭, 张 健 等. 助剂M (M = Cr、Zn、Y、La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响 [J]. 燃料化学学报, 2019, 47: 1251
|
27 |
Huang J J, Ding T, Ma K, et al. Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming [J]. ChemCatChem, 2018, 10: 3862
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|