Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (9): 713-720    DOI: 10.11901/1005.3093.2022.482
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion
PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya()
School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, China
Cite this article: 

PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion. Chinese Journal of Materials Research, 2023, 37(9): 713-720.

Download:  HTML  PDF(12424KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The titanium/steel composite pipe was prepared by hot extrusion at 1000℃ with low carbon steel Q235 as inner pipe and commercial pure titanium TA2 as cladding. The effect of interface microstructure on mechanical properties of titanium/steel composite pipe was studied by using metallographic microscope, field emission scanning electron microscope, X-ray diffractometer, microhardness tester and nano-indentation technology. The results show that the outer diameter of the extruded titanium/steel composite pipe is 22 mm, the inner and outer wall thicknesses are 3 mm and 0.2 mm respectively, the interface of steel/Ti pipes is well bonded, and the main phase of the interface is α-Fe, α-Ti, TiC and Fe2Ti, etc. The grain at the interface junction of the hot extruded Ti clad steel pipe is obviously refined, and the average grain size of the interface is 1.5 μm. The grain refinement of the Ti side of the composite is higher than that of the steel side. At the same time, under high temperature hot extrusion, the dislocation density at the bonding interface of the clad pipe increases, the grains are refined, and the microhardness is also improved. Low temperature annealing has different effects on the mechanical properties of both sides of titanium/steel composite interface, weakens the work hardening degree of titanium/steel composite pipe, improves the stiffness of interface material, and has little effect on the reaction layer formed by interface intermetallic compound.

Key words:  composite      hot extrusion      titanium/steel composite pipe      microstructure      mechanical property     
Received:  07 September 2022     
ZTFLH:  TG376.2  
Fund: Anhui Province Key Laboratory of Metallurgical Engineering & Resource Recycling(SKF22-04);Natural Science Foundation Project of Colleges and Universities in Anhui Province(KJ2020A0272)
Corresponding Authors:  ZHANG Mingya, Tel: 18855579770, E-mail: ahutzmh@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.482     OR     https://www.cjmr.org/EN/Y2023/V37/I9/713

MaterialsONCSiSPMnFeTi
TA20.1260.010.01----0.06Bal.
Q235--0.220.350.0450.0451.4Bal.-
Table 1  Chemical composition of TA2 and Q235 (mass fraction,%)
Fig.1  Photo of original structure of steel/titanium pipe
Fig.2  Process flow chart of hot extrusion titanium / steel composite pipe
Fig.3  EBSD image of titanium / steel interface structure (a) IPF diagram; (b) grain boundary diagram; (c) image quality (IQ) diagram; (d) distribution of grain size at interface
Fig.4  SEM image and EDS energy spectrum of extruded titanium/steel composite pipe interface (a) interface morphology; (b) Fe surface scan; (c) Ti surface scan, (d) C surface scan; (e) EDS point scan results
Fig.5  XRD of titanium / steel peeling interface (a) steel side; (b) titanium side
Fig.6  Hardness distribution of titanium/steel composite interface (a) and forming mechanism of interface reaction layer (b, c)
Fig.7  Combined with nanoindentation test of interface (a) metallographic diagram of indentation point: left extruded state, right annealed state; (b) comparison results of Young's modulus; (c) load displacement diagram in extrusion state; (d) load displacement diagram of annealed state
1 Bae D S, Chae Y R, Lee S P, et al. Effect of post heat treatment on bonding interfaces in Ti/Mild steel/Ti clad materials [J]. Procedia Eng., 2011, 10: 996
doi: 10.1016/j.proeng.2011.04.164
2 Ha J S, Hong S I. Design of high strength Cu alloy interlayer for mechanical bonding Ti to steel and characterization of their tri-layered clad [J]. Mater. Des., 2013, 51: 293
doi: 10.1016/j.matdes.2013.04.068
3 Su H, Luo X B, Chai F, et al. Manufacturing technology and application trends of titanium clad steel plates [J]. J. Iron Steel Res. Int., 2015, 22(11): 977
doi: 10.1016/S1006-706X(15)30099-6
4 Kundu S, Sam S, Chatterjee S. Interface microstructure and strength properties of Ti-6Al-4V and microduplex stainless steel diffusion bonded joints [J]. Mater. Des., 2011, 32(5): 2997
doi: 10.1016/j.matdes.2010.12.052
5 Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti-V-Cr burn resistant titanium alloys [J]. Chin. J. Mater. Res., 2019, 33(7): 537
doi: 10.11901/1005.3093.2019.090
孙欢迎, 赵 军, 刘翊安 等. C含量对Ti-V-Cr系阻燃钛合金微观组织和力学性能的影响 [J]. 材料研究学报, 2019, 33(7): 537
doi: 10.11901/1005.3093.2019.090
6 Kundu S, Chatterjee S. Diffusion bonding between commercially pure titanium and micro-duplex stainless steel [J]. Mater. Sci. Eng., 2008, 480A(1-2) : 316
7 Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100- x Cu x highentropy alloy interlayer [J]. J. Alloys Compd., 2019, 803: 649
doi: 10.1016/j.jallcom.2019.06.225
8 Xia Y Q, Dong H G, Hao X H, et al. Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal [J]. J. Mater. Process. Technol., 2019, 269: 35
doi: 10.1016/j.jmatprotec.2019.01.020
9 Zhou G S. The analysis for the manufacturing techniques of titanium tube and titanium clad Tubesheet [J]. China Chem. Ind. Equip., 2008, 10(4): 22
周国顺. 钛管和钛钢复合管板的制造技术浅析 [J]. 中国化工装备, 2008, 10(4): 22
10 Yu C, Qi Z C, Yu H, et al. Microstructural and mechanical properties of hot roll bonded titanium Alloy/Low carbon steel plate [J]. J. Mater. Eng. Perform., 2018, 27(4): 1664
doi: 10.1007/s11665-018-3279-9
11 Chen L S, Zhang X L, Zheng X P, et al. Research status of bimetal laminated composite plate prepared by rolling process [J]. Rare Met. Mater. Eng., 2018, 47(10): 3243
陈连生, 张鑫磊, 郑小平 等. 轧制双金属复合板材的研究现状 [J]. 稀有金属材料与工程, 2018, 47(10): 3243
12 Zhou Q, Liu R, Zhou Q, et al. Microstructure characterization and tensile shear failure mechanism of the bonding interface of explosively welded titanium-steel composite [J]. Mater. Sci. Eng., 2021, 820A: 141559
13 Mousavi S A A A, Sartangi P F. Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite [J]. Mater. Sci. Eng., 2008, 494A(1-2) : 329
14 Zhang Y, Sun D Q, Gu X Y, et al. Nd:YAG pulsed laser welding of TC4 Ti alloy to 301L stainless steel using Ta/V/Fe composite interlayer [J]. Mater. Lett., 2018, 212: 54
doi: 10.1016/j.matlet.2017.10.057
15 Bai Y L, Liu X F, Wang W J, et al. Current status and research trends in processing and application of titanium/steel composite plate [J]. Chin. J. Eng., 2021, 43(1): 85
白于良, 刘雪峰, 王文静 等. 钛/钢复合板及其制备应用研究现状与发展趋势 [J]. 工程科学学报, 2021, 43(1): 85
16 Luo R X. Study on extrusion forming technique for bimetal-lined pipe [J]. Hot Work. Technol., 2010, 39(13): 87
骆瑞雪. 双金属复合管的挤压成形工艺研究 [J]. 热加工工艺, 2010, 39(13): 87
17 Tian F, Li B, Zhou W M. Ultrasonic interface wave for interlaminar crack detection in steel-titanium composite pipe [J]. J. Pressure Vessel Technol., 2019, 141(4): 041401
18 Wang F L, Sheng G M, Deng Y Q. Impulse pressuring diffusion bonding of titanium to 304 stainless steel using pure Ni interlayer [J]. Rare Met., 2016, 35: 331
doi: 10.1007/s12598-014-0368-2
19 Fan J H, Li P F, Liang X J, et al. Interface evolution during rolling of Ni-clad stainless steel plate [J]. Chin. J. Mater. Res., 2021, 35(7): 493
范金辉, 李鹏飞, 梁晓军 等. 镍-不锈钢复合板轧制过程中界面的结合机制 [J]. 材料研究学报, 2021, 35(7): 493
20 Zhang B Q. Manufacturing technology of duplex metal pipe [J]. Mech. Electr. Eng. Technol., 2009, 38(3): 106
张宝庆. 双金属复合管的制造技术浅析 [J]. 机电工程技术, 2009, 38(3): 106
21 Yu C, Wu Z H, Guo Z X, et al. Microstructure and properties of hot-rolled bonded titanium clade steel plate [J]. Iron Steel, 2018, 53(4): 42
余 超, 吴宗河, 郭子楦 等. 热轧钛/钢复合板显微组织和性能 [J]. 钢铁, 2018, 53(4): 42
22 Cao M, Deng K K, Nie K B, et al. Microstructure, mechanical properties and formability of Ti/Al/Ti laminated composites fabricated by hot-pressing [J]. J. Manuf. Process., 2020, 58: 322
doi: 10.1016/j.jmapro.2020.08.013
23 Gao Y D, Zhou J P, Zhang Y, et al. Two pass laser welding of TC4 titanium alloy and 304 stainless steel using TA2/Q235 composite interlayer [J]. Mater. Lett., 2019, 255: 126521
doi: 10.1016/j.matlet.2019.126521
24 Bai Y L, Liu X F, Shi Z Z. Stress-induced alternating microstructures of titanium/steel bonding interface [J]. Mater. Lett., 2021, 298: 130019
doi: 10.1016/j.matlet.2021.130019
25 Momono T, Enjo T, Ikeuchi K. Effects of carbon content on the diffusion bonding of iron and steel to titanium [J]. ISIJ Int., 1990, 30(11): 978
doi: 10.2355/isijinternational.30.978
26 Chai X Y, Shi Z R, Chai F, et al. Effect of heating temperature on microstructure and mechanical properties of titanium clad steel by hot roll bonding [J]. Rare Met. Mater. Eng., 2019, 48(8): 2701
柴希阳, 师仲然, 柴 锋 等. 加热温度对轧制钛/钢复合板组织与性能的影响 [J]. 稀有金属材料与工程, 2019, 48(8): 2701
27 Wu C J, Chen G L, Qiang W J, et al. Metallic Materials. 2nd ed. [M]. Beijing: Metallurgical Industry Press, 2009: 9
吴承建, 陈国良, 强文江 等. 金属材料学(第2版). [M]. 北京: 冶金工业出版社, 2009: 9
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[6] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[7] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[8] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[9] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[10] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[11] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[12] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[13] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[14] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[15] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
No Suggested Reading articles found!