Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (3): 184-192    DOI: 10.11901/1005.3093.2021.651
ARTICLES Current Issue | Archive | Adv Search |
Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy
ZHAO Yunmei1,2, ZHAO Hongze1, WU Jie1, TIAN Xiaosheng1,2, XU Lei1()
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110116, China
Cite this article: 

ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy. Chinese Journal of Materials Research, 2023, 37(3): 184-192.

Download:  HTML  PDF(18378KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Powder metallurgy Inconel 718 alloy plates were prepared through hot isostatic pressing route using pre-alloyed Inconel 718 powder (produced by vacuum induction melting inert gas atomization, VIGA) in this paper, and then tungstun inert gas arc welding (TIG) is completed. Characterization of welded joints were performed using SEM, EBSD methods. Influence of post-welding heat treatment on joint microstructure and mechanical properties are analyzed. The results show that the base metal is fine equiaxed crystal, the grain size is about 28 μm, and the tensile strength is close to the requirement of wrought alloys. Powder metallurgy Inconel 718 alloy shows good weldability, no macroscopic porosities and inclusion defects are observed at the joints, and the joint strength is equivalent to the property of the base metal after heat treatment. After homogenization, the Laves phase is basically dissolved, the structure is uniform, ductility is obviously improved. Micropores and Laves can be eliminated by hot isostatic pressing treatment after welding that make mechanical properties more stable. Micro-porosities are easily formed at the interface between the Laves phase and the matrix, micro-porosities accumulate to form micro-cracks and eventually break.

Key words:  metallic materials      Inconel 718 alloy      powder metallurgy      welding      heat treatment      microstructure      mechanical properties     
Received:  22 November 2021     
ZTFLH:  TG441.8  
Fund: CAS Project for Young Scientists in Basic Research(YSBR-025)
Corresponding Authors:  XU Lei, Tel: (024)83978843, E-mail: lxu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.651     OR     https://www.cjmr.org/EN/Y2023/V37/I3/184

Fig.1  Welding plate size (a) and diagram of tensile specimen (b) (unit: mm)
ElementBCAlSiTiCrFeNiNbMoHON
Content0.0010.0410.530.120.9918.76Bal53.44.853.04<0.00100.0150.017
Table 1  Chemical compositions of Inconel 718 powder (%, mass fraction)
Fig.2  Independent particle size distribution (a) and surface morphology (b) of Inconel 718 pre-alloyed powder
Fig.3  Micro-porosity size and distribution of powder metallurgy alloy
Fig.4  Microstructure of powder metallurgy Inconel 718 alloy in different states (a) hot isostatic pressing (b) 980℃ solution and aging (c) 960℃ solution and aging
StateT / ℃Rp0.2 / MPaRm / MPaA / %
As-HIPedRT912124428
SART1065129721
SA2RT1083137922
Wrought[24]RT1100134515
As-HIPed650787103620
SA650864104320
SA2650893111512
Wrought[24]650930108012
Table 2  Tensile properties of Inconel 718 alloy in different states
Fig.5  X-ray inspection results of Inconel 718 welding joints (a) and microstructure of the welding joints (b)
Fig.6  Microstructure of cross sections of welding joints after various heat treatments (a) as welded; (b) solution and aging; (c) homogenization and (d) hot isostatic pressing
Fig.7  EBSD analyse of cross sections of TIG welding joints after different heat treatments (a) base metal; (b) as welded and (c) homogenization
Fig.8  Hardness distribution of Inconel 718 alloy welded joints in different heat treatment conditions Note:WM—Weld metal; HAZ—Heat affected zone; BM—Base metal
Fig.9  Tensile properties of Inconel 718 TIG welding joints at room (a) andelevated temperature 650℃ (b)
Fig.10  Tensile fracture of TIG welding joints after different heat treatment at room temperature (a) as welded; (b) solution and aging; (c) homogenization (d) hot isostatic pressing
Fig.11  Tensile fracture of TIG welding joints after different heat treatment at 650℃ (a) as welded; (b) solution and aging; (c) homogenization (d) hot isostatic pressing
1 Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46(11): 1281
doi: 10.3724/SP.J.1037.2010.01281
师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46(11): 1281
doi: 10.3724/SP.J.1037.2010.00309
2 Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52(10): 1259
刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52(10): 1259
doi: 10.11900/0412.1961.2016.00290
3 Du J H, Lu X D, Deng Q, et al. Progress in the research and manufacture of GH4169 alloy [J]. J. Iron. Steel. Res. Int., 2015, 22(8): 657
doi: 10.1016/S1006-706X(15)30054-6
4 Zhao X B, Gu Y F, Lu J T, et al. New research development of superalloy GH4169 [J]. Rare Met. Mater. Eng., 2015, 44(03): 768
赵新宝, 谷月峰, 鲁金涛 等. GH4169合金的研究新进展 [J]. 稀有金属材料与工程, 2015, 44(03): 768
5 Sonar T, Balasubramanian V, Malarvizhi S, et al. An overview on welding of Inconel 718 alloy - Effect of welding processes on microstructural evolution and mechanical properties of joints [J]. Mater. Charact., 2021, 174
6 Damodaram R, Raman S, Rao K P. Microstructure and mechanical properties of friction welded alloy 718 [J]. Mat. Sci. Eng., A., 2013, 560: 781
doi: 10.1016/j.msea.2012.10.035
7 Geng P H, Qin G L, Li T Y, et al. Microstructural characterization and mechanical property of GH4169 superalloy joints obtained by linear friction welding [J]. J. Manuf. Process., 2019, 45: 100
doi: 10.1016/j.jmapro.2019.06.032
8 Nan X J, Xiong J T, Jin F, et al. Modeling of rotary friction welding process based on maximum entropy production principle [J]. J. Manuf. Process., 2019, 37: 21
doi: 10.1016/j.jmapro.2018.11.016
9 Zhang B G, Wu L, Feng J C. Research status of electron beam welding technology at home and abroad [J]. Welding & Joining, 2004, (02): 5
张秉刚, 吴 林, 冯吉才. 国内外电子束焊接技术研究现状 [J]. 焊接, 2004, (02): 5
10 Liu H Q, Song J, Wang H M, et al. Heterogeneous microstructure and associated mechanical properties of thick electron beam welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy joint [J]. Mat. Sci. Eng., A, 2021, 825
11 Tucho W M, Cuvillier P, Sjolyst-Kverneland A, et al. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment [J]. Mat. Sci. Eng., A, 2017, 689: 220
12 Sui S, Chen J, Ming X L, et al. The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process [J]. Int. J. Adv. Manuf. Tech., 2017, 91(5-8): 2733
doi: 10.1007/s00170-016-9901-9
13 Ye X, Hua X M, Wang M, et al. Microstructure evolution of partially melted zone of TIG welding joint of Ni-based Inconel-718 superalloy [J]. Acta Metall. Sin., 2014, 50(08): 1003
叶 欣, 华学明, 王 敏 等. 镍基Inconel-718合金TIG焊部分熔化区组织变化 [J]. 金属学报, 2014, 50(08): 1003
14 Venukumar S, Sarkar P, Sashank J S, et al. Microstructural and mechanical properties of Inconel 718 TIG weldments [J]. Mater. Today: Proceedings, 2018, 5(2): 8480
15 Ram G D J, Reddy A V, Rao K P, et al. Microstructure and mechanical properties of Inconel 718 electron beam welds [J]. Mater Sci. Tech-Lond., 2013, 21(10): 1132
doi: 10.1179/174328405X62260
16 Janaki Ram G D, Venugopal Reddy A, Prasad Rao K, et al. Control of Laves phase in Inconel 718 GTA welds with current pulsing [J]. Sci. Technol. Weld. Joi., 2013, 9(5): 390
doi: 10.1179/136217104225021788
17 Chlebus E, Gruber K, Kuznicka B, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J]. Mat. Sci. Eng., A, 2015, 639: 647
18 Qi H, Azer M, Ritter A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel718 [J]. Metall. Mater. Trans. A., 2009, 40(10): 2410
19 Cao M, Zhang D Y, Gao Y, et al. The effect of homogenization temperature on the microstructure and high temperature mechanical performance of SLM-fabricated IN718 alloy [J]. Mat. Sci. Eng., A, 2021, 801
20 Cao X, Rivaux B, Jahazi M, et al. Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd:YAG laser [J]. J. Mater. Sci., 2009, 44(17): 4557
doi: 10.1007/s10853-009-3691-5
21 Reddy G M, Murthy C, Rao K S, et al. Improvement of mechanical properties of Inconel 718 electron beam welds—influence of welding techniques and postweld heat treatment [J]. Int. J. Adv. Manuf. Tech., 2009, 43(7-8): 671
doi: 10.1007/s00170-008-1751-7
22 Chang L T, Sun W R, Cui Y Y, et al. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact [J]. Mat. Sci. Eng., A, 2014, 599: 186
23 Wu J, Xu L, Lu Z G, et al. Preparation of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys and electron beam welding [J]. Acta Metall. Sin, 2016, 52(9): 9
吴 杰, 徐 磊, 卢正冠 等. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接 [J]. 金属学报, 2016, 52(9): 9
24 Zhuang J Y, Du J H, Deng Q. Deformed Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006
庄景云, 杜金辉, 邓 群. 变形高温合金GH4169 [M]. 北京: 冶金工业出版社, 2006
25 Qi H, Azer M, Ritter A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured inconel 718 [J]. Metall. Mater. Trans. A., 2009, 40(10): 2410
26 Xu D F, Tian C S. Research on laves phase re-dissolution behaviors of Gh4169 alloy steel during heat treatment process based on mathematical model [J]. Foundry Technology, 2014, 35(11): 2570
徐东方, 田长申. 基于数学模型的GH4169合金钢在热处理过程中Laves相回溶行为的研究 [J]. 铸造技术, 2014, 35(11): 2570
27 Ye C W, Zhang X H, Wang L, et al. Effect of re-HIPing on microstructure of HIPed TC4 alloy [J]. T. Mater. Heat. Treat., 2013, 34(6): 4
叶呈武, 张绪虎, 王 亮 等. 二次热等静压对TC4合金组织的影响 [J]. 材料热处理学报, 2013, 34(6): 4
28 Shao C, Liu H Y, Li J T, et al. Applications of hot isostatic pressing on cast superalloy [J]. Mater. Rev., 2012, 26(19): 5
邵 冲, 刘慧渊, 李俊涛 等. 热等静压在铸造高温合金领域的应用 [J]. 材料导报, 2012, 26(19): 5
29 Sindo K, translated by Yan J C, Yang J G, Zhang J G, et al. Welding Metallurgy (2nd Edition) [M]. Beijing: Higher Education Press, 2011: 164
Sindo K著, 闫久春, 杨建国, 张广军译. 焊接冶金学 (第二版) [M]. 北京: 高等教育出版社, 2011: 164
30 Zheng X, Shi Y Y, Chen Y B, et al. The effects of heat treatments on the microstructure and properties of Inconel 718 electron beam welding joints [J]. Welding Digest of Machinery Manufacturing, 2017, 1: 26
郑 欣, 师玉英, 陈玉宝 等. 热处理对Inconel 718合金电子束焊接头微观组织和性能的影响 [J]. 机械制造文摘(焊接分册), 2017, 1: 26
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!