|
|
Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites |
LIN Shifeng1,2, XU Dongan3, ZHUANG Yanxin1, ZHANG Haifeng1,2, ZHU Zhengwang2( ) |
1.School of Material Science and Engineering, Northeastern University, Shenyang 110819, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Military Representative Office of the Army Equipment Department in Shenyang, Shenyang 110004, China |
|
Cite this article:
LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites. Chinese Journal of Materials Research, 2023, 37(3): 193-202.
|
Abstract Dual-layered composites of TiZr-based bulk metallic glass /TC21 Ti-alloy were successfully prepared by infiltration method, and their microstructure and mechanical property were investigated in detail. The results show that there is a good wettability of ZT3 (Ti32.8Zr30.2Ni5.3Cu9Be22.7) melt with TC21 Ti-alloy, and the as-prepared dual-layered composites show an excellent interfacial bonding between BMGs and TC21 Ti-alloys. The temperature of preparation plays a critical role for the microstructure and mechanical property of the dual-layered composites. With the increasing temperature for preparation, the interfacial layers become thicker moreover, the TC21 Ti-alloy may dissolve increasingly into the BMGs matrix so that the dendrites precipitate significantly increase and they become coarser with the increasing temperature. The dual-layered composites exhibit a satisfied flexural mechanical property, namely a flexural strength of 2177 MPa with outstanding flexural plasticity. Additionally, the prepared dual-layered composites show the dynamic compressive strength up to 1326 MPa at ambient temperature, but decreases as the temperature increasing.
|
Received: 24 December 2021
|
|
Fund: National Natural Science Foundation of China(52074527) |
Corresponding Authors:
ZHU Zhengwang, Tel: (024)23971782, E-mail: zwzhu@imr.ac.cn
|
1 |
Lu Y, Su S, Zhang S, et al. Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility [J]. Acta Mater., 2021, 206: 116632
doi: 10.1016/j.actamat.2021.116632
|
2 |
Zhang C, Wang W, Xing W, et al. Understanding on toughening mechanism of bioinspired bulk metallic glassy composites by thermal spray additive manufacturing [J]. Scr. Mater., 2020, 177: 112
doi: 10.1016/j.scriptamat.2019.10.017
|
3 |
Lin S F, Liu D M, Zhu Z W, et al. New Ti-based bulk metallic glasses with exceptional glass forming ability [J]. J. Non-Cryst. Solids., 2018, 502: 71
doi: 10.1016/j.jnoncrysol.2018.06.038
|
4 |
Xing D, Chen S S, Chen P D, et al. Effect of Fe microalloying on plastic deformation behavior of Cu-Zr-Al metallic glasses [J]. Chin. J. Mater. Res., 2021, 35(11): 850
doi: 10.11901/1005.3093.2020.444
|
|
邢 栋, 陈双双, 宋佩頔 等. Fe微合金化对Cu-Zr-Al非晶合金塑性变形行为的影响及其机理 [J]. 材料研究学报, 2021, 35(11): 850
|
5 |
Li T T, Hu Y, Cui X M, et al. Micro-hardness and Shear Bands of Zr-Al-Cu-Ni-Ag Bulk Metallic Glass Composites [J]. Chin. J. Mater. Res., 2014, 28(10): 730
|
|
李亭亭, 胡 勇, 崔晓明 等. Zr-Al-Cu-Ni-Ag非晶复合材料的显微硬度和剪切带形貌 [J]. 材料研究学报, 2014, 28(10): 730
|
6 |
Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J]. Nat. Mater., 2005, 5(1): 15
doi: 10.1038/nmat1536
|
7 |
Lin S F, Ge S F, Zhu Z W, et al. Double toughening Ti-based bulk metallic glass composite with high toughness, strength and tensile ductility via phase engineering [J]. Appl. Mater. Today., 2021, 22: 100944
|
8 |
Lin S F, Zhu Z W, Ge S F, et al. Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex-situ and in-situ hybrid strategy [J]. J. Mater. Sci. Technol., 2020, 50: 128
doi: 10.1016/j.jmst.2019.12.037
|
9 |
Hofmann D C, Suh J Y, Wiest A, et al. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility [J]. PNAS., 2008, 105(51): 20136
doi: 10.1073/pnas.0809000106
pmid: 19074287
|
10 |
Kolodziejska J A, Kozachkov H, Kranjc K, et al. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites [J]. Sci. Rep., 2016, 6(1): 22563
doi: 10.1038/srep22563
|
11 |
Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451(7182): 1085
doi: 10.1038/nature06598
|
12 |
Szuecs F, Kim C P, Johnson W L. Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite [J]. Acta Mater., 2001, 49(9): 1507
doi: 10.1016/S1359-6454(01)00068-4
|
13 |
Kozachkov H, Kolodziejska J, Johnson W L, et al. Effect of cooling rate on the volume fraction of B2 phases in a CuZrAlCo metallic glass matrix composite [J]. Intermetallic., 2013, 39: 89
doi: 10.1016/j.intermet.2013.03.017
|
14 |
Zhang H F, Li H, Wang A M, et al. Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite [J]. Intermetallic., 2009, 17(12): 1070
doi: 10.1016/j.intermet.2009.05.011
|
15 |
Zhang B, Fu H M, Zhang H F, et al. Synthesis and property of short tungsten fibre/Zr-based metallic glass composite [J]. J. Mater. Sci. Technol., 2019, 35: 1347
doi: 10.1080/02670836.2019.1624017
|
16 |
Zhang H, Liu L Z, Zhang Z F, et al. Deformation and fracture behavior of tungsten fiber-reinforced bulk metallic glass composite subjected to transverse loading [J]. J. Mater. Res., 2006, 21(6): 1375
doi: 10.1557/jmr.2006.0169
|
17 |
Li Z K, Fu H M, Sha P F, et al. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites [J]. Sci. Rep., 2015, 5(1): 8967
doi: 10.1038/srep08967
|
18 |
Tang H, Zhang Y, Li Y. Synthesis of La-based in-situ bulk metallic glass matrix composite [J]. Intermetallic, 2002, 10(11-12): 1203
doi: 10.1016/S0966-9795(02)00148-6
|
19 |
Fu X L, Li Y, Schuh C A. Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement [J]. J. Mater. Res., 2011, 22(6): 1564
doi: 10.1557/JMR.2007.0191
|
20 |
Qiao J W. In-situ dendrite/metallic glass matrix composites: a review [J]. J. Mater. Sci. Technol., 2013, 29(8): 685
doi: j.jmst.2013.05.020
|
21 |
Qiao J W, Wang S, Zhang Y, et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification [J]. Appl. Phys. Lett., 2009, 94(15): 151905
doi: 10.1063/1.3118587
|
22 |
Cheng J L, Chen G, Xu F, et al. Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites [J]. Intermetallic, 2010, 18(12): 2425
doi: 10.1016/j.intermet.2010.08.040
|
23 |
Zhang X L, Chen G, Du Y L. Synthesis of plastic Mg-based bulk-metallic-glass matrix composites by bridgman solidification [J]. Metall. Mater. Trans. A, 2012, 43(8): 2604
doi: 10.1007/s11661-012-1107-7
|
24 |
Qiao J W, Jia H L, Liaw P K, Metallic glass matrix composites [J]. Mater. Sci. Eng. R., 2016, 100: 1
doi: 10.1016/j.mser.2015.12.001
|
25 |
Chen S, Li W Q, Zhang L, et al. Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites [J]. Composites B, 2020, 199: 108219
doi: 10.1016/j.compositesb.2020.108219
|
26 |
Tang M Q, Zhang H F, Zhu Z W, et al. TiZr-base bulk metallic glass with over 50 mm in diameter [J]. J. Mater. Sci. Technol., 2010, 26(6): 481
doi: 10.1016/S1005-0302(10)60077-1
|
27 |
Wen X, Wan M P, Huang C W, et al. Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy [J]. Mater. Des., 2019, 180: 107898
doi: 10.1016/j.matdes.2019.107898
|
28 |
Long W, Zhang S, Liang Y L, et al. Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy [J]. Int. J. Miner. Metall. Mater., 2020, 28(2): 296
doi: 10.1007/s12613-020-1996-1
|
29 |
Ding S, Kong J, Schroers J. Wetting of bulk metallic glass forming liquids on metals and ceramics [J]. J. Appl. Phys., 2011, 110(4): 043508
|
30 |
Ma G, Lv S, Lu Z, et al. Wetting behavior and interfacial characteristic of Ti32.8Zr30.2Cu9Ni5.3Be22.7/Ti55 alloy system [J]. Mater. Chem. Phys., 2021, 270: 124759
doi: 10.1016/j.matchemphys.2021.124759
|
31 |
Ma G F, Li Z K, He C L, et al. Wetting behaviors and interfacial characteristics of TiZr-based bulk metallic glass/W substrate [J]. J. Alloys Compd., 2013, 549: 254
doi: 10.1016/j.jallcom.2012.09.066
|
32 |
Ghoneim A, Ojo O A. Numerical modeling and simulation of a diffusion-controlled liquid-solid phase change in polycrystalline solids [J]. Comput. Mater. Sci., 2011, 50(3): 1102
doi: 10.1016/j.commatsci.2010.11.008
|
33 |
Conner R D, Li Y, Nix W D, et al. Shear band spacing under bending of Zr-based metallic glass plates [J]. Acta Mater., 2004, 52(8): 2429
doi: 10.1016/j.actamat.2004.01.034
|
34 |
Zhang L, Jiang F, Zhao Y, et al. Shear band multiplication aided by free volume under three-point bending [J]. J. Mater. Res., 2011, 25(2): 283
doi: 10.1557/JMR.2010.0028
|
35 |
Guo W, Kato H, Yamada R, et al. Fabrication and mechanical properties of bulk metallic glass matrix composites by in-situ dealloying method [J]. J. Alloys Compd., 2017, 707: 332
doi: 10.1016/j.jallcom.2016.10.167
|
36 |
Wu F F, Chan K C, Li S T, et al. Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading [J]. J. Mater. Sci., 2013, 49(5): 2164
doi: 10.1007/s10853-013-7909-1
|
37 |
Liu B X, Huang L J, Kaveendran B, et al. Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status [J]. Composites B, 2017, 108: 377
doi: 10.1016/j.compositesb.2016.10.001
|
38 |
Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
doi: 10.1016/j.compscitech.2016.02.011
|
39 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10(11): 817
doi: 10.1038/nmat3115
pmid: 22020005
|
40 |
Lu J, Ravichandran G, Johnson W L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures [J]. Acta Mater., 2003, 51(12): 3429
doi: 10.1016/S1359-6454(03)00164-2
|
41 |
Li M C, Jiang M Q, Yang S, et al. Effect of strain rate on yielding strength of a Zr-based bulk metallic glass [J]. Mater. Sci. Eng. A, 2017, 680: 21
doi: 10.1016/j.msea.2016.10.081
|
42 |
Li W Q, Zhu Z W, Li G J, et al. Correlation between dynamic compressive strength and fracture behaviors of bulk metallic glasses [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33(10): 1407
doi: 10.1007/s40195-020-01065-5
|
43 |
Zhang J X, Yi X B, Shen J C, et al. Influence of solution and ambient temperature on dynamic compression mechanical properties and adiabatic shear sensitivity of TC21 titanium alloy [J]. Materials Reports, 2020, 34(12): 24092
|
|
张俊喜, 易湘斌, 沈建成 等. 固溶和工作温度对TC21钛合金动态压缩性能和绝热剪切敏感性的影响 [J]. 材料导报, 2020, 34(12): 24092
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|