Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (3): 193-202    DOI: 10.11901/1005.3093.2021.704
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites
LIN Shifeng1,2, XU Dongan3, ZHUANG Yanxin1, ZHANG Haifeng1,2, ZHU Zhengwang2()
1.School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Military Representative Office of the Army Equipment Department in Shenyang, Shenyang 110004, China
Cite this article: 

LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites. Chinese Journal of Materials Research, 2023, 37(3): 193-202.

Download:  HTML  PDF(5466KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dual-layered composites of TiZr-based bulk metallic glass /TC21 Ti-alloy were successfully prepared by infiltration method, and their microstructure and mechanical property were investigated in detail. The results show that there is a good wettability of ZT3 (Ti32.8Zr30.2Ni5.3Cu9Be22.7) melt with TC21 Ti-alloy, and the as-prepared dual-layered composites show an excellent interfacial bonding between BMGs and TC21 Ti-alloys. The temperature of preparation plays a critical role for the microstructure and mechanical property of the dual-layered composites. With the increasing temperature for preparation, the interfacial layers become thicker moreover, the TC21 Ti-alloy may dissolve increasingly into the BMGs matrix so that the dendrites precipitate significantly increase and they become coarser with the increasing temperature. The dual-layered composites exhibit a satisfied flexural mechanical property, namely a flexural strength of 2177 MPa with outstanding flexural plasticity. Additionally, the prepared dual-layered composites show the dynamic compressive strength up to 1326 MPa at ambient temperature, but decreases as the temperature increasing.

Key words:  metallic materials      bulk metallic glass composites      preparation temperature      microstructure      flexural mechanical property      dynamic compressive mechanical property     
Received:  24 December 2021     
ZTFLH:  TB331  
Fund: National Natural Science Foundation of China(52074527)
Corresponding Authors:  ZHU Zhengwang, Tel: (024)23971782, E-mail: zwzhu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.704     OR     https://www.cjmr.org/EN/Y2023/V37/I3/193

Fig.1  Relationship between contact angle and temperature during continuous heating process (a) and increasing time (b)
Fig.2  Schematic diagram of the whole dual-layer composites (a) and SEM images of the microstructures at the interfaces between metallic glasses and TC21 titanium alloys for the dual-layer composites prepared under different temperatures (b~d)
Fig.3  Line scanning analysis result and the corresponding element profiles for the dual-layer composites prepared at 1173 K
CompositionsAlTiCrNiCuZrNbMoSn
Dendrites4.7269.611.271.993.6016.980.251.030.54
Metallic glass matrix3.6958.071.135.377.9523.560.440.420.31
Table 1  Compositions of dendrites and metallic glass matrix in dual-layer composite prepared at the temperature of 1123 K (atomic fraction, %)
Fig.4  Flexural stress-deflection curves of ZT3 BMG and the dual-layer composites under different temperature (a) and local enlarge flexural stress-deflection curve of the composites prepared at 1173 K (b)
Fig.5  SEM image of the dual-layer composites prepared at 1073 K (a~c), 1123 K (d~f) and 1173 K (g~i) after failure
Fig.6  Tensile stress-strain curves of the TC21 titanium alloy after heating treatment under different temperature
Fig.7  True dynamic compressive stress-strain curves for the dual-layer composites under different temperature (a) and the variation of strain rate with time under compressive loading for every sample (b)
1 Lu Y, Su S, Zhang S, et al. Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility [J]. Acta Mater., 2021, 206: 116632
doi: 10.1016/j.actamat.2021.116632
2 Zhang C, Wang W, Xing W, et al. Understanding on toughening mechanism of bioinspired bulk metallic glassy composites by thermal spray additive manufacturing [J]. Scr. Mater., 2020, 177: 112
doi: 10.1016/j.scriptamat.2019.10.017
3 Lin S F, Liu D M, Zhu Z W, et al. New Ti-based bulk metallic glasses with exceptional glass forming ability [J]. J. Non-Cryst. Solids., 2018, 502: 71
doi: 10.1016/j.jnoncrysol.2018.06.038
4 Xing D, Chen S S, Chen P D, et al. Effect of Fe microalloying on plastic deformation behavior of Cu-Zr-Al metallic glasses [J]. Chin. J. Mater. Res., 2021, 35(11): 850
doi: 10.11901/1005.3093.2020.444
邢 栋, 陈双双, 宋佩頔 等. Fe微合金化对Cu-Zr-Al非晶合金塑性变形行为的影响及其机理 [J]. 材料研究学报, 2021, 35(11): 850
5 Li T T, Hu Y, Cui X M, et al. Micro-hardness and Shear Bands of Zr-Al-Cu-Ni-Ag Bulk Metallic Glass Composites [J]. Chin. J. Mater. Res., 2014, 28(10): 730
李亭亭, 胡 勇, 崔晓明 等. Zr-Al-Cu-Ni-Ag非晶复合材料的显微硬度和剪切带形貌 [J]. 材料研究学报, 2014, 28(10): 730
6 Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J]. Nat. Mater., 2005, 5(1): 15
doi: 10.1038/nmat1536
7 Lin S F, Ge S F, Zhu Z W, et al. Double toughening Ti-based bulk metallic glass composite with high toughness, strength and tensile ductility via phase engineering [J]. Appl. Mater. Today., 2021, 22: 100944
8 Lin S F, Zhu Z W, Ge S F, et al. Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex-situ and in-situ hybrid strategy [J]. J. Mater. Sci. Technol., 2020, 50: 128
doi: 10.1016/j.jmst.2019.12.037
9 Hofmann D C, Suh J Y, Wiest A, et al. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility [J]. PNAS., 2008, 105(51): 20136
doi: 10.1073/pnas.0809000106 pmid: 19074287
10 Kolodziejska J A, Kozachkov H, Kranjc K, et al. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites [J]. Sci. Rep., 2016, 6(1): 22563
doi: 10.1038/srep22563
11 Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451(7182): 1085
doi: 10.1038/nature06598
12 Szuecs F, Kim C P, Johnson W L. Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite [J]. Acta Mater., 2001, 49(9): 1507
doi: 10.1016/S1359-6454(01)00068-4
13 Kozachkov H, Kolodziejska J, Johnson W L, et al. Effect of cooling rate on the volume fraction of B2 phases in a CuZrAlCo metallic glass matrix composite [J]. Intermetallic., 2013, 39: 89
doi: 10.1016/j.intermet.2013.03.017
14 Zhang H F, Li H, Wang A M, et al. Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite [J]. Intermetallic., 2009, 17(12): 1070
doi: 10.1016/j.intermet.2009.05.011
15 Zhang B, Fu H M, Zhang H F, et al. Synthesis and property of short tungsten fibre/Zr-based metallic glass composite [J]. J. Mater. Sci. Technol., 2019, 35: 1347
doi: 10.1080/02670836.2019.1624017
16 Zhang H, Liu L Z, Zhang Z F, et al. Deformation and fracture behavior of tungsten fiber-reinforced bulk metallic glass composite subjected to transverse loading [J]. J. Mater. Res., 2006, 21(6): 1375
doi: 10.1557/jmr.2006.0169
17 Li Z K, Fu H M, Sha P F, et al. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites [J]. Sci. Rep., 2015, 5(1): 8967
doi: 10.1038/srep08967
18 Tang H, Zhang Y, Li Y. Synthesis of La-based in-situ bulk metallic glass matrix composite [J]. Intermetallic, 2002, 10(11-12): 1203
doi: 10.1016/S0966-9795(02)00148-6
19 Fu X L, Li Y, Schuh C A. Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement [J]. J. Mater. Res., 2011, 22(6): 1564
doi: 10.1557/JMR.2007.0191
20 Qiao J W. In-situ dendrite/metallic glass matrix composites: a review [J]. J. Mater. Sci. Technol., 2013, 29(8): 685
doi: j.jmst.2013.05.020
21 Qiao J W, Wang S, Zhang Y, et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification [J]. Appl. Phys. Lett., 2009, 94(15): 151905
doi: 10.1063/1.3118587
22 Cheng J L, Chen G, Xu F, et al. Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites [J]. Intermetallic, 2010, 18(12): 2425
doi: 10.1016/j.intermet.2010.08.040
23 Zhang X L, Chen G, Du Y L. Synthesis of plastic Mg-based bulk-metallic-glass matrix composites by bridgman solidification [J]. Metall. Mater. Trans. A, 2012, 43(8): 2604
doi: 10.1007/s11661-012-1107-7
24 Qiao J W, Jia H L, Liaw P K, Metallic glass matrix composites [J]. Mater. Sci. Eng. R., 2016, 100: 1
doi: 10.1016/j.mser.2015.12.001
25 Chen S, Li W Q, Zhang L, et al. Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites [J]. Composites B, 2020, 199: 108219
doi: 10.1016/j.compositesb.2020.108219
26 Tang M Q, Zhang H F, Zhu Z W, et al. TiZr-base bulk metallic glass with over 50 mm in diameter [J]. J. Mater. Sci. Technol., 2010, 26(6): 481
doi: 10.1016/S1005-0302(10)60077-1
27 Wen X, Wan M P, Huang C W, et al. Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy [J]. Mater. Des., 2019, 180: 107898
doi: 10.1016/j.matdes.2019.107898
28 Long W, Zhang S, Liang Y L, et al. Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy [J]. Int. J. Miner. Metall. Mater., 2020, 28(2): 296
doi: 10.1007/s12613-020-1996-1
29 Ding S, Kong J, Schroers J. Wetting of bulk metallic glass forming liquids on metals and ceramics [J]. J. Appl. Phys., 2011, 110(4): 043508
30 Ma G, Lv S, Lu Z, et al. Wetting behavior and interfacial characteristic of Ti32.8Zr30.2Cu9Ni5.3Be22.7/Ti55 alloy system [J]. Mater. Chem. Phys., 2021, 270: 124759
doi: 10.1016/j.matchemphys.2021.124759
31 Ma G F, Li Z K, He C L, et al. Wetting behaviors and interfacial characteristics of TiZr-based bulk metallic glass/W substrate [J]. J. Alloys Compd., 2013, 549: 254
doi: 10.1016/j.jallcom.2012.09.066
32 Ghoneim A, Ojo O A. Numerical modeling and simulation of a diffusion-controlled liquid-solid phase change in polycrystalline solids [J]. Comput. Mater. Sci., 2011, 50(3): 1102
doi: 10.1016/j.commatsci.2010.11.008
33 Conner R D, Li Y, Nix W D, et al. Shear band spacing under bending of Zr-based metallic glass plates [J]. Acta Mater., 2004, 52(8): 2429
doi: 10.1016/j.actamat.2004.01.034
34 Zhang L, Jiang F, Zhao Y, et al. Shear band multiplication aided by free volume under three-point bending [J]. J. Mater. Res., 2011, 25(2): 283
doi: 10.1557/JMR.2010.0028
35 Guo W, Kato H, Yamada R, et al. Fabrication and mechanical properties of bulk metallic glass matrix composites by in-situ dealloying method [J]. J. Alloys Compd., 2017, 707: 332
doi: 10.1016/j.jallcom.2016.10.167
36 Wu F F, Chan K C, Li S T, et al. Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading [J]. J. Mater. Sci., 2013, 49(5): 2164
doi: 10.1007/s10853-013-7909-1
37 Liu B X, Huang L J, Kaveendran B, et al. Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status [J]. Composites B, 2017, 108: 377
doi: 10.1016/j.compositesb.2016.10.001
38 Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
doi: 10.1016/j.compscitech.2016.02.011
39 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10(11): 817
doi: 10.1038/nmat3115 pmid: 22020005
40 Lu J, Ravichandran G, Johnson W L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures [J]. Acta Mater., 2003, 51(12): 3429
doi: 10.1016/S1359-6454(03)00164-2
41 Li M C, Jiang M Q, Yang S, et al. Effect of strain rate on yielding strength of a Zr-based bulk metallic glass [J]. Mater. Sci. Eng. A, 2017, 680: 21
doi: 10.1016/j.msea.2016.10.081
42 Li W Q, Zhu Z W, Li G J, et al. Correlation between dynamic compressive strength and fracture behaviors of bulk metallic glasses [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33(10): 1407
doi: 10.1007/s40195-020-01065-5
43 Zhang J X, Yi X B, Shen J C, et al. Influence of solution and ambient temperature on dynamic compression mechanical properties and adiabatic shear sensitivity of TC21 titanium alloy [J]. Materials Reports, 2020, 34(12): 24092
张俊喜, 易湘斌, 沈建成 等. 固溶和工作温度对TC21钛合金动态压缩性能和绝热剪切敏感性的影响 [J]. 材料导报, 2020, 34(12): 24092
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!